Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Industrial materials >> Наноматериалы

Применение нанотехнологий в деревообрабатывающей промышленности:обзор

Аннотация

Деревообрабатывающая промышленность - один из основных драйверов экономического роста Малайзии. Лес, являющийся источником различных лигноцеллюлозных материалов, обладает множеством неиспользованных возможностей, которые можно использовать для производства устойчивых и биоразлагаемых наноразмерных материалов, обладающих очень интересными характеристиками для использования в самой древесной промышленности или во многих различных областях применения. Сектор изделий из древесины может также использовать различные легкодоступные наноматериалы для улучшения характеристик существующих продуктов или для создания новых продуктов с добавленной стоимостью из леса. В этом обзоре освещаются последние разработки в области применения нанотехнологий в производстве изделий из древесины.

Введение

Нанотехнология определяется как манипулирование веществами от 1 до 100 нм. Нанотехнология - это междисциплинарная область, которая объединяет науку и технологии с целью разработки новых и улучшенных материалов со значительными функциями, физическими и химическими свойствами [1, 2]. Материал в этом масштабе обладает уникальными свойствами по сравнению с такими же материалами в более высоких измерениях [3]. По этой причине различные инновационные приложения с помощью нанотехнологий можно изучать во многих дисциплинах.

Нанотехнология может быть не только движущей силой, способствующей развитию технологий, но и движущей силой достижения национального экономического роста. Объем экспорта лесной промышленности Малайзии в 2019 году составил около 22,5 млрд ринггитов [4]. Древесные товары, экспортируемые из Малайзии, включают пиломатериалы, шпон, фанеру и молдинги. Деревообрабатывающая промышленность Малайзии имеет возможность полностью использовать нанотехнологии для получения собственных преимуществ. Совершенно необходимо, чтобы усилия по применению нанотехнологий в деревообрабатывающей промышленности, особенно в Малайзии, были поддержаны и уделено внимание, чтобы диверсифицировать и повысить ценность существующих лесных продуктов, что в конечном итоге будет способствовать экономическому росту в этой сфере.

Нельзя исключать тот факт, что лес играет важную роль для цивилизации на протяжении стольких лет, поскольку он стал источником лигноцеллюлозных материалов для использования и развития различных продуктов. Фактически, изделия из дерева уже давно доступны в обществе в виде древесины, мебели, бумаги и многих других функциональных материалов [5, 6]. Применение нанотехнологий в лесном секторе, особенно в лесных продуктах или изделиях из древесины, требует внимания всех заинтересованных сторон и заинтересованных сторон. Использование нанотехнологий может привести к созданию более прочных, многофункциональных, но при этом более легких продуктов на основе древесины [3]. Традиционные лесные продукты, такие как целлюлоза и бумага, древесные композиты, покрытия для древесины и консерванты для древесины, могут быть расширены или преобразованы в новые или ценные дополнительные продукты для поиска более широкого и / или более продвинутого применения [5].

В этом обзоре применение нанотехнологий в производстве изделий из древесины можно разделить на два [2] направления:

  1. 1

    Получение наноматериала (ов) из леса

    Растущие опасения по поводу окружающей среды вызвали огромную потребность во внедрении экологически безопасных и биоразлагаемых наноразмерных материалов. Этот новый материал, называемый наноцеллюлозой, можно производить из лесных ресурсов безопасным и устойчивым образом. Обилие лигноцеллюлозного материала из леса вызвало всплеск интереса к превращению целлюлозы в наноцеллюлозу. Наноцеллюлоза - это в основном целлюлоза на молекулярном уровне, которая имеет несколько ключевых характеристик, таких как высокая прочность и жесткость, высокое отношение прочности к массе, электромагнитный отклик и большая площадь поверхности [5, 7, 8, 9]. Выдающиеся характеристики этого материала открывают огромные возможности применения за пределами самой лесной промышленности. В области изделий из древесины он может применяться в качестве усиливающего агента в целлюлозно-бумажной и древесной смеси или в качестве материала покрытия для деревянных покрытий [10,11,12]. Благодаря своей универсальности наноцеллюлоза может использоваться в качестве одного из компонентов (в качестве подложки, стабилизатора, электрода) для нелесного сектора, такого как электроника, датчики, аккумуляторы, продукты питания, фармацевтика и косметика [5, 13].>

  2. 2

    Использование наноматериалов для изготовления изделий из древесины

    Наноматериалы могут быть использованы для улучшения существующих деревянных изделий с точки зрения их функциональности. Например, использование наноматериалов в деревянных покрытиях, таких как оксид наноцинка или оксид нанотитана, может улучшить функциональность древесины с точки зрения ее долговечности, огнестойкости и поглощения УФ-излучения, а также снижения водопоглощения [14,15,16]. С другой стороны, применение наноинкапсулирования в консервантах для древесины [17, 18] могло бы улучшить пропитку древесины пестицидами, гарантируя, что химические вещества могут проникать глубже в древесину, тем самым уменьшая проблему чрезмерного выщелачивания [19]. Это повышает стойкость обработанной древесины к воздействию агентов биоразложения.

Опубликован ряд обзорных статей по применению нанотехнологий в лесном хозяйстве и лесных товарах [20, 21]. В статье Маккранка [21] дается общий обзор применения нанотехнологий в лесном секторе, в то время как Moon et al. [20] обсуждают больше о наноиндентировании. Насколько известно авторам, существует ограниченное количество публикаций по этой теме, особенно в отдельных секторах деревообрабатывающей промышленности. В этом обзорном документе будет освещен недавний прогресс в применении нанотехнологий в отдельных секторах, связанных с древесиной, а именно в целлюлозно-бумажной промышленности, древесных композитах, древесных покрытиях и долговечности древесины. Более того, некоторые потенциальные применения наноцеллюлозы, являющейся новым поколением целлюлозы в производстве изделий из древесины, также выделяются в таких областях, как энергия и сенсоры.

Приложения

Целлюлоза и бумага

Ежегодное производство бумаги и картона во всем мире составляет более 400 миллионов тонн [22]. Это показывает, что нынешняя цифровая эра не остановила постоянное использование бумажной продукции в обществе. Тем не менее, повышается спрос в основном на различную упаковочную продукцию [23]. Этот рост может быть вызван изменением потребительских предпочтений по сравнению с покупками в Интернете и ростом электронной коммерции, которая дает такое удобство делать покупки, не выходя из дома, и обеспечивает безопасную доставку продукта предполагаемым получателям.

Бумага производится из лигноцеллюлозных материалов, которые прошли ряд первичной обработки, обработки, изготовления бумаги, сушки и нанесения покрытий. На стадии производства бумаги все смешанные целлюлозы и добавки добавляются и регулируются для соответствия различным конечным продуктам. Нанотехнологии применяются в целлюлозно-бумажной промышленности в виде наноматериалов или нанодобавок. Например, лесные ресурсы или, скорее, лигноцеллюлозные материалы могут быть использованы для извлечения наноразмерного строительного блока, известного как наноцеллюлоза, который служит в качестве армирующего элемента для обеспечения уникальной механической прочности, функциональности и гибкости [5]. Это новое поколение целлюлозы производится путем расслоения клеточной стенки для получения нанофибрилл или путем экстракции кристаллической целлюлозы в наномасштабе. Наноцеллюлоза добавляется в производство бумаги в основном для повышения прочности бумаги. Другие наноматериалы, используемые в процессе производства бумаги, включают нанокремнезем, нанозеолит и др. [22]. Использование наноматериалов или нанодобавок в бумажной промышленности может помочь улучшить характеристики бумажной продукции.

Основные добавки, которые используются или потенциально могут быть использованы в целлюлозно-бумажной промышленности, обсуждаются в следующих разделах.

Наноцеллюлоза как агент прочности во влажном или сухом состоянии

Наноцеллюлоза широко изучалась в качестве добавки для повышения прочности в целлюлозно-бумажной промышленности [24, 25]. Наноцеллюлоза вызывает огромный интерес из-за ее обилия, доступности, а также из-за ее интересных характеристик, таких как биоразлагаемость, низкая токсичность, отличные механические и оптические свойства, большая площадь поверхности и возобновляемость [5, 7]. Наноцеллюлоза на самом деле представляет собой целлюлозу в наномасштабе, которую можно выделить и получить из любых лигноцеллюлозных материалов, включая древесную массу, недревесные растения, остатки древесины и сельскохозяйственных культур, бактериальную целлюлозу и оболочку. Целлюлоза представляет собой линейное соединение с β-1,4 связанными звеньями глюкозы, которое включает кристаллические и аморфные области. Удаление аморфных доменов из цепочки целлюлозы с использованием минеральной кислоты приводит к изоляции нанокристаллической целлюлозы, тогда как расслоение клеточной стенки за счет механического воздействия с высоким сдвигом приводит к уменьшению ширины целлюлозы, таким образом образуя нанофибриллированную целлюлозу. Эти две категории наноцеллюлозы являются наиболее изученными наноматериалами в области целлюлозы и бумаги для улучшения качества продукции. За последнее десятилетие многочисленные работы были сосредоточены на получении нанофибриллированной целлюлозы (NFC) и нанокристаллической целлюлозы (NCC) из различных растительных ресурсов. На рисунке 1 показаны изображения нанокристаллической целлюлозы и нанофибриллированной целлюлозы, полученные с помощью просвечивающей электронной микроскопии (ПЭМ).

ТЕМ-изображение NCC из Acacia magium а Источник :Джасмани и Аднан [26]. Воспроизведено с разрешения Elsevier и NFC из хвойной целлюлозы, b Источник :Чжао и др. [27]. Воспроизведено с разрешения Elsevier

Свойства наноцеллюлозы варьируются в зависимости от методов получения и источника целлюлозы. В таблице 1 показаны морфология и кристалличность нанофибриллированной целлюлозы и нанокристаллической целлюлозы.

От целлюлозы к наноцеллюлозе

Нанофибриллированная целлюлоза является наиболее изученной нанодобавкой в ​​производстве бумаги, о чем сообщалось во многих работах [3, 25]. Нанофибриллированную целлюлозу получают, подвергая волокна селективной механической обработке с высоким усилием сдвига. Существует множество методов и комбинаций методов для производства нанофибриллированной целлюлозы. Гомогенизация и микрофлюидизация - обычные методы, используемые для получения нанофибриллированной целлюлозы, которые включают помещение волокон в небольшое сопло под высоким давлением для повторных проходов, обычно между 10 и 15 проходами [32, 33]. Этот тип обработки, если он используется отдельно, требует больших затрат энергии, поэтому предварительная обработка химическими веществами, такими как окисление, опосредованное TEMPO (2,2,6,6-тетраметилпиперидин-1-оксил) [34], карбоксиметилирование или фермент [35, 36]. ] обычно требуется для экономии энергии. Используя этот метод, нанофибриллированная целлюлоза производится в результате высоких скоростей сдвига, вызванных высокой скоростью и силой потока жидкости. Другой популярный метод производства нанофибриллированной целлюлозы - измельчение. Шлифовальный станок состоит из неподвижных и вращающихся каменных дисков. Сила сдвига, создаваемая камнями, разрушает волокна клеточной стенки на отдельные нанофибриллы. Чтобы избежать широкого распределения по ширине при использовании этого метода из-за агрегации [37], авторы рекомендовали хранить сырье в воде после процессов варки и отбеливания. Это препятствует образованию сетки водородных связей, когда она находится в сухом состоянии [37, 38]. Также был изучен метод обработки ультразвуком для получения нановолокон. Обработка ультразвуком включает в себя создание кавитационной высокой силы сдвига из ультразвуковых волн, которые могут разрушить структуру ячейки волокна [39]. Считается, что с помощью ультразвуковой обработки получаются хорошо диспергированные и стабильные нановолокна [3]. Кроме того, криодробление также может применяться для преобразования нативных волокон в нановолокна. Волокна необходимо заморозить с помощью жидкого азота с применением высоких сдвиговых усилий. Высокая сила сдвига вызывала давление на кристаллы льда, заставляющие стенки клеток разрываться и высвобождать микрофибриллы [40,41,42,43].

Нанокристаллическую целлюлозу, экстрагированную из природной целлюлозы, обычно получают с использованием кислотного гидролиза. Другие методы, включающие использование определенных химических веществ, таких как окисление, опосредованное ТЕМПО [44] и ионные жидкости [45], также были изучены для получения наноцеллюлозы. Сообщалось также о применении фермента целлюлазы [46, 47].

Во время кислотного гидролиза степень полимеризации целлюлозы быстро снижается, но она стабилизируется в какой-то момент, известный как степень выравнивания полимеризации [48]. Причина такого поведения может быть связана с тем, что аморфные области быстро гидролизуются кислотой. Когда начинается гидролиз, кислота предпочтительно атакует аморфную область из-за ее большого объема и гидролизует легкодоступную гликозидную связь [49]. Как только он гидролизует легкодоступную связь, дальнейший гидролиз происходит с гораздо меньшей скоростью на восстанавливающем конце цепи глюкозы и на поверхности кристаллической области [50]. Кислотный гидролиз зависит от таких факторов, как тип кислоты, концентрация кислоты, температура и время [49, 51, 52]. Любое изменение концентрации кислоты, времени гидролиза и температурных условий влияет на морфологию нанокристаллической целлюлозы. Например, увеличение времени гидролиза [53] и концентрации кислоты [29] приводит к более короткой нанокристаллической целлюлозе, тогда как высокая температура приводит к полному превращению целлюлозы в глюкозу [50, 54, 55].

Добавление наноцеллюлозы в бумагоделательное производство приводит к получению бумаги с лучшими характеристиками, что увеличивает прочность бумаги [56, 57] и плотность [58, 59, 60], а также снижает пористость [61]. Добавление наноструктурированной целлюлозы приводит к аналогичным свойствам бумаги, добавленной с битыми волокнами [3, 25]. Теоретически прочность бумаги может быть увеличена за счет добавления агентов, повышающих прочность в сухом и влажном состоянии [24, 62], добавления функционализированного волокна [63] и взбивания [64]. Улучшение приводит к способности волокон к склеиванию [25]. Boufi et al. [25] предположили, что механизм может быть связан с увеличением площади склеивания в результате того, что наноцеллюлоза действует как соединитель между волокнами, что приводит к связыванию волокна с волокном. Кроме того, это также может быть связано с различными сетями, созданными в оптоволокне, что приводит к увеличению способности связывания. Учитывая микрометровую длину наноцеллюлозы, они могут действовать как мост для соединения соседних волокон, что приводит к более прочной сети [25]. Сеть взаимного связывания, которую создают волокна и наноцеллюлоза, увеличивает прочность бумаги.

Наноцеллюлоза в качестве нанодобавки улучшает внутреннее связывание, что приводит к увеличению прочности на разрыв в сухом состоянии, снижению воздухопроницаемости и непрозрачности, а также к повышению плотности [3]. Поскольку наноцеллюлоза представляет собой наноразмерный материал, она имеет большую площадь поверхности, поэтому водородные связи могут формироваться более эффективно. Он добавляется в качестве добавки для мокрой части для повышения прочности в сухом состоянии и улучшения удерживания. Наноцеллюлоза, обычно используемая для придания прочности в сухом состоянии, имеет форму нанофибриллированной целлюлозы.

Существуют различные стратегии добавления NFC в композицию целлюлозы, поскольку он может быть добавлен непосредственно с [24, 62, 65] или без удерживающего средства [58], или смешан с другими наполнителями или длинными волокнами [66, 67] с последующим добавлением удерживающего средства. . Увеличение прочности на разрыв после добавления NFC связано с добавленным количеством. Было обнаружено, что увеличение прочности на разрыв на 5% наблюдалось при добавлении 3% NFC в композицию пульпы, состоящую из взбитой пульпы вместе с катионным крахмалом [24]. Интересно отметить, что эффект был более заметным, если мякоть меньше взбивалась. Например, увеличение прочности на разрыв более чем на 100% при добавлении 6% NFC к термомеханической целлюлозе. С другой стороны, NFC оказывал меньшее влияние при добавлении в хорошо измельченную целлюлозу [65]. Таким образом, ожидается, что увеличение прочности на растяжение произойдет, когда NFC будет добавлен в бумагу с наполнителем, механическую целлюлозу и переработанную целлюлозу. Hii et al. [65] сообщили о таком наблюдении, что NFC адсорбируется на наполнитель и волокна и связывает наполнитель с сеткой волокон. Единственный серьезный недостаток использования NFC в производстве бумаги заключается в том, что он замедляет дренаж. Дренаж играет очень важную роль в производстве бумаги, поскольку он напрямую влияет на эффективность производства бумаги. Чем медленнее время стекания, тем медленнее будет производиться бумага. Поэтому очень важно использовать удерживающий агент в определенной дозировке для улучшения адсорбции нановолокон на поверхности волокна, что приводит к улучшенному обезвоживанию [24, 68].

NFC имеет промежуточные свойства в отношении прочности в сухом состоянии добавки, такой как крахмал, и мелких частиц, образующихся в результате взбивания, поскольку оба они приводят к увеличению площади сцепления [3]. Это достигается за счет создания мягкого и тонкого слоя на поверхности волокна, который помогает улучшить сцепление волокон во время сушки, а также за счет заполнения пустот и пор между волокнами, которые также увеличивают площадь сцепления [3].

Наноцеллюлоза как материал покрытия для барьерных свойств

Наноцеллюлозу также можно использовать в качестве материала покрытия в упаковочной бумаге, поскольку она обладает хорошими барьерными свойствами. Преимущество использования наноцеллюлозы в качестве элемента покрытия заключается в том, что проблема обезвоживания больше не является проблемой, поскольку она добавляется после изготовления бумаги. Существуют различные подходы, которые можно использовать для нанесения наноцеллюлозы, которые включают распыление, нанесение покрытия на стержни, прессование размеров и нанесение покрытия валиком. Сообщалось о применении наноцеллюлозы, в частности нанофибриллированной целлюлозы, для увеличения кислородного барьера и маслостойкости [69]. В одном примере наблюдалось снижение воздухопроницаемости с 69 000 до 4,8 и с 660 до 0,2 нм Па -1 . для небеленой бумаги и жиронепроницаемой бумаги, соответственно [70], с использованием стержневого устройства для нанесения покрытий. Сиверуд и Стениус [71] применили различные количества NFC от 0 до 8% к целлюлозе из мягкой древесины и обнаружили, что барьерные свойства заметно увеличились с 6,5 до 360 нм Па −1 s −1 . Это связано с уменьшением пористости, вызванным увеличением нанофибрилл. Применение NFC и шеллака также было предпринято Hult et al. [72] на бумаге и картоне, что приводит к снижению воздухопроницаемости, скорости передачи кислорода и водяного пара, что делает его перспективным для создания барьерной упаковки.

Мало того, наноцеллюлоза, особенно нанофибриллированная целлюлоза, может быть преобразована в свободно стоящие тонкие пленки или нанобумагу. Эта нанобумага может использоваться в качестве подложки для электронных приложений, поскольку она прозрачная и гибкая [73].

Наноматериал как удерживающий агент для улучшения собственности

В бумагоделательное производство добавляются удерживающие агенты для улучшения удержания функциональных химикатов на бумаге. Некоторые наноматериалы были протестированы в бумажных продуктах, например, использование нанозеолита [74] и диоксида нанотитана. Нанозеолит используется в качестве осушителя в бумажной промышленности для поглощения влаги, а также для удаления газов, если он используется для специальной бумаги. Этому процессу способствует большая площадь поверхности нанозеолита, состоящая из пустот и пор. Оксид нанотитана, добавленный в бумагу, может формировать бумагу с лучшим динамическим модулем упругости по сравнению с контролируемым образцом [75].

Эффект нанонаполнителя для улучшения свойств

Использование наполнителя в бумажной промышленности в основном связано со снижением затрат, поскольку наполнитель обычно дешевле, чем сама целлюлоза. Помимо того, что наноцеллюлоза изучается в качестве добавки к прочности, ее также можно использовать в качестве наполнителя. Добавление нанофибриллированной целлюлозы может уменьшить количество древесной массы и увеличить количество наполнителя, таким образом снижая производственные затраты [76]. Кроме того, произведенная бумага имеет улучшенные свойства, такие как низкая пористость и высокая непрозрачность. Также сообщалось, что добавление 2–10% нанофибриллированной целлюлозы в качестве наполнителя приводит к увеличению прочности на 50–90% (Future Markets Inc., 2012). Наноглина может использоваться в качестве добавки в бумажном производстве для снижения газопроницаемости, что может привести к увеличению срока хранения бумаги. Это очень важно в упаковочной промышленности, в которой газовые и водные барьеры играют важную роль в предотвращении порчи продуктов питания и напитков.

Карбонат нанокальция используется в качестве наполнителя для улучшения светорассеяния. Модифицированный осажденный карбонат кальция с использованием наноструктурированных частиц положительно повлиял на светорассеяние [77]. Осажденный карбонат кальция был покрыт наночастицами силиката и сульфида цинка. Wild et al. [78] сообщили о аналогичном исследовании, в котором покрытие наночастиц использовалось в лабораторных, пилотных и заводских испытаниях. Исследование показало, что покрытие из наночастиц обеспечивает хорошее качество печати, водостойкость и стабильность размеров. Оксид наноцинка, добавленный в композицию бумаги, придает бумаге антибактериальные свойства. В то же время оптические свойства, такие как яркость и белизна, а также пригодность для печати на бумаге также улучшаются при добавлении нанокиси цинка. Оксид нанотитана также изучался в сочетании с бета-циклодекстрином в мелованной бумаге [79]. Было обнаружено, что смесь наноматериалов имеет лучший эффект разложения ксилола по сравнению с бумагой, покрытой только оксидом нанотитана.

Наноматериал как средство определения размера для улучшения собственности

В бумагоделательное производство добавляется проклеивающий агент для повышения сопротивления проникновению воды / жидкости, так что бумага пригодна для печати и письма. Использование нанокремнезема может улучшить оптические свойства и снизить время печати до 30%. Было обнаружено, что бумага, покрытая нанокремнеземом, обеспечивает лучшую оптическую плотность, стабильность размеров и качество печати по сравнению с бумагой без покрытия [80,81,82].

Древесные композиты

Дерево - это подарок природы человечеству, поскольку это биоразлагаемый и возобновляемый материал, который можно использовать во многих сферах. Однако сама древесина обладает рядом недостатков, таких как хрупкость, негибкость и недолговечность из-за нападений термитов и других. Использование древесных волокон в производстве древесных композитов имеет свои недостатки, так как они имеют низкую объемную плотность, низкую термическую стабильность, высокую тенденцию к поглощению влаги и подверженность биологическому разложению. Нанотехнологии используются во многих науках, и их можно использовать для улучшения качества многих материалов, включая древесину и древесные композиты.

Наноцеллюлоза как армирующий материал

Принцип использования наноцеллюлозы в качестве армирующего материала в матричном материале привел к проведению множества исследовательских работ. За счет добавления наноразмерной целлюлозы нанокомпозиты обладают выдающимися свойствами во многих отношениях, которые не могут быть достигнуты с помощью микрокомпозитов [83]. Эти армированные наноцеллюлозой композиты способны заменить обычные композиты. Посредством соответствующей модификации NCC могут быть разработаны различные функциональные наноматериалы с выдающимися свойствами или значительно улучшенными физическими, химическими, биологическими, а также электронными свойствами. Свойства нанокомпозитов зависят от нескольких факторов, таких как свойства материала матрицы, характеристики наноцеллюлозы, дисперсия наноцеллюлозы в материале матрицы и межфазные взаимодействия между наполнителем и материалом матрицы [84].

Наноцеллюлоза как усилитель в различных типах матричных материалов широко изучается. Полимерные нанокомпозиты, состоящие из природных или синтетических полимеров, армированных наноцеллюлозой, зарекомендовали себя как многообещающий класс материалов. Улучшение механических свойств является наиболее частой целью при получении этих армированных наноцеллюлозой полимеров [85,86,87]. Полимеры на нефтяной основе обычно делятся на термопластичные и термореактивные. Разница между термопластом и термореактивным полимером заключается в том, что их длинноцепочечные молекулы удерживаются связями, первый удерживается слабыми ван-дер-ваальсовыми связями, а второй - сильными ковалентными связями [88]. Было изучено множество термореактивных материалов для использования в композитах из наноцеллюлозы. Эпоксидная смола, например, использовалась для продуктов из современных материалов из-за ее превосходных адгезионных свойств и хороших механических свойств после отверждения (высокий модуль упругости, низкая ползучесть и приемлемые характеристики при повышенных температурах). Однако он может легко выйти из строя под ударом из-за сильно сшитой структуры [89]. С добавлением функционализированной наноцеллюлозы в качестве армирующего материала механические свойства целлюлозных нанокомпозитов на основе эпоксидной смолы значительно улучшились [90, 91]. Предложен подход к получению композитов на основе эпоксидно-целлюлозных нановолокон с ориентированной структурой [92]. Этот процесс сочетал в себе метод замораживания (или замораживания), чтобы подготовить высокопористые наноцеллюлозные сети перед их использованием в качестве преформ для пропитки биоэпоксидной смолой. Результаты показали, что модули упругости и упругости нанокомпозитов были лучше, чем модули чистой эпоксидной смолы в обоих направлениях испытаний, а прочность была улучшена в продольном направлении. Другой наиболее часто используемой термореактивной смолой является ненасыщенный полиэфир (UP). Наноструктурированные биокомпозиты UP с содержанием наноцеллюлозы до 45 об.%, Что намного выше, чем в любых предыдущих исследованиях, были успешно обработаны и охарактеризованы [93]. Армирование сетки наноструктурированной наноцеллюлозы значительно улучшает не только модуль и прочность UP, но также пластичность и ударную вязкость. На рисунке 2 показаны морфологии изломов гидрофобного полиэфира, поли (3-гидроксибутират-со-4-гидроксибутирата) (ПОБ), армированного 15 мас.% NCC или 15 мас.% Ацетилированного NCC с помощью автоэмиссионной сканирующей электронной микроскопии (FE- SEM). Изображения FE-SEM ясно показали, что ацетилированный NCC был гомогенно диспергирован в PHB по сравнению с NCC. Однородность способствовала сильному межфазному взаимодействию между армирующим материалом и полимерной матрицей [94].

Изображения FE-SEM для морфологии трещин a PHB / NCC-15, b PHB / ацетилированный NCC (II) -15, c Нанокомпозиты ПГБ / ацетилированный НКЦ (IV) -15. Источник :Gan et al. [94]. Воспроизведено с разрешения ACS

Таблица 2 иллюстрирует включение наноцеллюлозы в термопластичные полимеры, такие как PLA, PVA, крахмал, PU, ​​PP и т.д. Процессы, используемые для разработки этих нанокомпозитов, включают, среди прочего, замену растворителя, водную дисперсию, литье из раствора, прививку, литье под давлением пены с сердцевиной и задней стенкой, электропрядение, коагуляцию и термокомпрессию, а также реакцию in situ анионной полимеризации с раскрытием кольца. В большинстве исследований сообщалось, что добавление наноцеллюлозы в нанокомпозиты привело к улучшению механических свойств (прочности, жесткости, сопротивления ползучести, эластичности), термической стабильности, барьерных свойств и даже некоторых указанных антибактериальных и антиоксидантных функций нанокомпозитов в зависимости от компонентов. используемых нанокомпозитов. Общие результаты свидетельствуют о положительных результатах по усилению наноцеллюлозы в термопластической матрице, что побуждает и поощряет проведение дополнительных исследований по производству более экологичных и устойчивых композитных материалов.

Природные полимеры обычно встречаются в природе и могут быть извлечены. Природные полимеры не являются термопластичными, за некоторыми исключениями. Однако методы химической и физической модификации способны вызвать термопластичность природных полимеров из ресурсов биомассы, таких как целлюлоза, лигнин и хитин. В связи с растущим вниманием к окружающей среде и спросом на экологически чистые продукты, различные природные полимеры, армированные наноцеллюлозой, были использованы для производства био-нанокомпозитов. Существует очень ограниченное количество исследований, в которых сообщается об использовании наноцеллюлозы растительного происхождения для регенерации костной ткани. В одном из исследований [113] сообщается о получении нанокомпозита путем синтеза (TEMPO) -окисленной нанофибриллированной целлюлозы (TNFC) или нанокристаллической целлюлозы (NCC) с гидроксиапатитом (HA). Было обнаружено, что композиты демонстрируют лучшую прочность на сжатие, модули упругости и вязкость разрушения в диапазоне внешней и плотной кортикальной кости, чем композиты на основе NCC. Кроме того, композиты не вызывают цитотоксичность по отношению к клеткам остеобластов костного происхождения человека, а, скорее, повышают их жизнеспособность, что делает их перспективными для регенерации костной ткани при нагрузках.

Среди других используемых природных биополимеров - альгинат натрия, целлюлоза и белки, которые обладают такими характерными свойствами, как биоразлагаемость, биосовместимость и низкая токсичность. Например, альгинат натрия широко используется в качестве превосходного биоматериала во многих областях, таких как тканевая инженерия, доставка лекарств, упаковка пищевых продуктов и биомедицинские приложения. Однако низкая механическая прочность и неконтролируемая деградация ограничивают его применение. Было предпринято несколько попыток преодолеть эти проблемы путем разработки нанокомпозитных пленок с включением наноцеллюлозы в альгинатную матрицу. Было обнаружено, что включение NFC в альгинатную матрицу улучшило ее водостойкость и механические свойства. Дальнейшие исследования показали, что при обработке ультразвуком для облегчения диспергирования окисленный NCC, опосредованный TEMPO, имеет лучшую эффективность в усилении альгинатного биополимера по сравнению с NFC. Подобная концепция биоинспирированной стратегии синергетического усиления при интеграции наноцеллюлозы в хитин, хитозан, изолят соевого белка (SPI) и матрицу льняной жевательной резинки открывает новый путь для создания высокоэффективных нанокомпозитов.

Наночастицы для улучшения свойств деревянных панелей

Древесные композиты обычно описываются как широкий спектр продуктов, содержащих комбинацию деревянных элементов, удерживаемых вместе связующим веществом. Одним из преимуществ древесных композитов является то, что они могут быть разработаны с учетом определенных качеств или требований к рабочим характеристикам при различной толщине, сортах и ​​размерах. Древесные композиты производятся с использованием преимуществ естественных прочностных характеристик древесины (и иногда приводят к большей структурной прочности и устойчивости, чем обычная древесина). On the other hand, wood composites also have disadvantages such that they require more primary energy to manufacture when compared to solid lumber. Hence, wood composites are not suitable for outdoor use as they can absorb water and are more prone to humidity-induced warping than solid woods. The adhesives used release toxic formaldehyde in the finished product. Nanotechnology can be utilised to improve the quality of wood-based composites to fulfil the increasing demand for existing products and for new products to be used in new applications.

The main drawbacks of wood are its susceptibility and biodegradability by microorganisms and also dimensional instability when subjected to varied moisture content. These are mostly due to the cell wall main polymers and their high abundance of hydroxyl groups (OH) [114]. Wood is naturally hygroscopic, and moisture absorption by wood materials is directly related to the exposed surface area. The addition of inorganic nanoparticles to wood composites has been reported to enhance the composites’ anti-microbial properties. Nanoparticles of zinc oxide (ZnO) exhibit good antimicrobial activity. These nanoparticles are added into melamine-urea formaldehyde (MUF) glue before being used for particleboard production [115]. The findings show that there were increments in bioresistance of the particleboards against the Gram-positive bacterium Staphylococcus aureus , the Gram-negative bacterium Escherichia coli , the molds Aspergillus niger and Penicillium brevicompactum as well as the brown-rot fungus Coniophora puteana . Silver nanoparticles which are well-known biocide additives also exhibited similar antibacterial and anti-mold efficiency effects when applied onto the melamine-laminated surfaces of particleboards [116]. The combination of nanocopper oxide and alkane surfactant was also confirmed to improve water and termite resistances of treated plywood specimens [117]. Modified starch-based adhesive was explored as another option to increase the decay resistance of particleboard. Particleboard bonded with modified PVA/oil palm starch added with nanosilicon oxide (SiO2 ) and boric acid was found to be more decay resistant than particleboard bonded with their native starch [118]. The addition of nano-SiO2 and boric acid as the water repellent and antifungal agents, respectively, have prevented the microorganism's activity in the final particleboard.

The manufacture of wood composite panels can be improvised by developing methods to shorten the cure time of the resin during hot-pressing, which could speed up production or improve overall quality of the board. Heat transfer which effects the pressing time of a wood-composite panel varies with thickness, press temperature, closing rate, and mat moisture distribution. The addition of ZnO nanoparticles increased the heat transfer at the centre of the particleboard during hot-pressing causing a greater degree of resin cure and improved the physico-mechanical properties [119]. High conductive nanoparticles such as multiwalled carbon nanotubes (CNTS) and aluminium oxide (Al2 О 3 ) were also proven to enhance thermal and mechanical properties of medium density fibreboard [120]. The study also reported that although activated carbon nanoparticles did not give any significant effect to physical and mechanical properties of the board, they have more accelerated effect on the curing of urea formaldehyde (UF) and reduction in the formaldehyde emission compared to the other two nanofillers.

In fabricating the wood composites, the adhesives play exceptionally significant role which affect the composites properties which include the mechanical properties, their ability to perform in wet conditions and their effects on the environment. Urea formaldehyde, melamine urea formaldehyde and phenol formaldehyde are commonly used in the wood composites industry. The utilisation of nanoparticles has led to improvements of the properties of adhesives. Many studies have been conducted to produce nanomaterial-reinforced wood composites with enhanced physical and mechanical performance and reduced formaldehyde emission. Nanoclays have been shown to be excellent fillers and reinforcement for the resin matrix, and significantly enhancing strength, toughness and other properties. The modification of UF adhesive using nanoclay particles for plywood fabricated with three forest species from fast-growth plantations:Cordia alliodora , Gmelina arborea and Vochysia ferruginea were reported by Muñoz and Moya [121]. It was determined that nanomodification of the resin with nanoclay at 0.75% improved the moduli of rupture and elasticity of the board. The effect of using nanoclay particles in PF adhesives significantly elevated mechanical properties of the adhesive in the bondline and contributed an increase in the macro-bonding strength of plywood [122]. Interestingly, transition metal ion-modified bentonite (TMI-BNT) nanoclay was used to covert crystalline UF resins to amorphous polymers by blocking the hydrogen bonds via in situ intercalation method [123]. This resulted in 56.4% increase in the adhesion strength and 48.3% reduction in the formaldehyde emission.

Other nanoparticles used to improvise the physical and mechanical properties of wood composites include nanowollastonite (NW) [124, 125] nano-ZnO [126], nano-SiO2 , nano-Al2 О 3 [127], nanosilver [128] and nanocellulose (NCC and NFC). The NCC was utilised as filler for the adhesive, whereas NFC was applied as a binder to the formulation of the composite boards. Recently, it has been revealed that the addition of micro- and nanofibres of cellulose have advantageous effects on the properties of resin. Based on the investigations, it was found that the addition NCC significantly improved the mechanical properties of plywood in the amount of 10%/100 g of solid resin [129]. On the other hand, the physical properties of particleboard after adding the NCC to UF adhesives showed smooth surface, insignificant difference in the density and moisture content of the panels and only high value of nanocellulose content exhibited significantly higher in thickness swelling [130]. Meanwhile, particle boards panels manufactured using NFC as the bonding materials were shown to meet the industry requirements in terms of mechanical properties for low density grades [131]. For high density particleboard, it was estimated that the increased NFC ratio and higher pressure could improve internal bond properties. Even the nail and face screw withdrawal strength was found to be increased with the increase in NFC addition ratio and panel density [132, 133].

Wood Coating

Forests are primarily or partially used for the production of wood and non-wood forest products. Non-wood forest products include bamboo, rattan, firewood, charcoal, damar, palm, etc. There is a huge demand for high quality wood, but the availability of wood from natural forest has been declining. Consequently, the search for non-wood resources as an alternative to wood has been accelerated. Due to its rapid growth property, bamboo has been developed into one of the most important non-wood forest products. Wood is a natural biologically self-assembled polymeric structure (cellulose, lignin, hemicellulose). It is one of the most versatile materials and has been used for centuries in the form of building and structures. However, wood is subjected to intense oxidative degradation processes such as photo-oxidation, chemical oxidation, thermal decomposition and photolysis reactions from the environment, including ultraviolet (UV) light, moisture, chemical pollutant and heat/cold variations [134]. Even non-wood materials like bamboo itself is a natural organic material which is rich in protein, carbohydrate and other nutrients and is prone to mildew, being eaten by moths and rotting. Hence, the final products of wood and non-wood products conventionally comprise additives which can be used as coatings for protection and aesthetic appearance improvement, preservatives for protection against fire and biological factors (fungi and insects).

Coating is a process of applying a layer to the substrate surface. Examples of common coatings applied to wood surfaces are varnishes, lacquers, and paints whose purpose can be both protective and decorative. The main components of the coatings determine their fundamental properties such as binders, pigments, solvents, fillers, and additives [135]. Each element contributes specific properties to the wood surface. The binder contributes to the adhesion of the pigment to the wood and creates a protective layer, while the pigment provides colour and form non-translucent surface layer. The solvents give necessary viscosity for coating application, and the addition of the fillers alters the colour strength and the gloss of the coating. As for the additives, they inhibit mould and decay, assist the drying process, improve the adhesion properties and control the finishing. However, there are weaknesses of coatings such as limited flexibility, strength loss, disproportionate adhesion between coating layer and substrate, inferior abrasion resistance and less durability.

Nanocoating has the capability to resolve these issues. Nanocoating is a process by which a thin layer of thickness about < 100 nm is deposited on the substrate for improving some properties or for imparting new functionality. The nanocoating can be used not only on nanomaterials but also on a bulkier material with an extremely thin layer coating without affecting the topography of the substrate surface. The application of nanocoating in wood and wood products is mainly focused on the improvement of durability, mechanical properties, fire resistance and UV absorption as well as decrease in water absorption. One approach to enhance the functionality and the end user value of nanocoating is the addition of nanoparticles [136]. These nanoparticles have very large surface-to-volume ratios due to their morphology, which allows them to interact intensively with their surroundings, and their nanosize ensures transparency is still sustained.

Nanoadditive for Durability Improvement

Nanocoatings are able to improve the durability of wood and non-wood products by utilising nanoparticles and nanodelivery systems that make the changes at the molecular level of the products. One of the aims of coatings is to prevent the growth of various microorganisms like fungi and bacteria. Nanosized particles of metal oxides, such as zinc oxide (ZnO) [137, 138], titanium oxide [138, 139] and cerium oxide (CeO2 ) [140] were reported to demonstrate strong antimicrobial properties. Studies have been conducted in the direct deposition of nanoparticles onto wood surfaces or direct functionalisation of wood surfaces with nanoparticles. ZnO nanoparticles were successfully fabricated on the surface of bamboo timber by a simple low-temperature wet chemical method based on sol–gel-prepared ZnO seed layers. The findings indicated that the treated bamboo timber had better resistance against Aspergillus niger V. Tiegh (A. niger) and Penicillium citrinum Thom (P. citrinum), but poor resistance against Trichoderma viride Pers. ex Fr (T. viride) [141]. Graphene also demonstrates superior ability to inhibit bacterial growth. Hence, the combination of utilising reduced graphene oxide and nano-ZnO to coat bamboo-based outdoor materials via a two-step dip-dry and hydrothermal process, resulting in the improvement of the mould resistance and antibacterial activity properties [142]. Similarly, the nanostructured ZnO using a hydrothermal process has also provided an effective protection of wood surfaces from biodeterioration [143].

Waterborne polyurethane [144] coatings (WPU) incorporated with nanocrystalline cellulose (NCC) and silver nanoparticles (AgNPs) were used to improve antibacterial property of wood board [145]. The AgNPs were known for their antimicrobial material but aggregated easily during the preparation process. Therefore, NCC was introduced to assist with the blending and dispersibility of AgNPs with WPU or other coatings. In addition, NCC was also a good reinforcing agent to improve the mechanical properties of nanocomposites. Mini emulsion polymerisation was also used to synthesise an acrylic latex coating containing AgNPs, which will limit the growth of black-stain fungi on the wood surfaces [146]. The study of the antibacterial effect of silver and zinc oxide nanoparticles in acrylic coatings applied during the treatment of commercial wooden composites such as particleboard and medium density fibreboard was conducted [147]. Ag and ZnO nanoparticles were partly more effective against the Gram-negative bacterium Escherichia coli compared to the Gram-positive bacterium Staphylococcus aureus .

Nanoadditive for Water Absorption Improvement

It is well known that wood is susceptible to water or moisture. This is due to the hydrophilic nature of the cell wall constituent polymer and its capillary-porous structure. The interaction between wood and water leads to biodegradation of wood, dimensional instability and accelerated weathering. Although there are conventional chemical modifications being used to improve the hydrophobicity of wood, the accessibility of water into wood is still not completely retarded [148]. Furthermore, the chemicals used in the treatment process are possibly hazardous. Hence, nanotechnology is used as an alternative approach for wood modification and functionalisation. The incorporation of nanoparticles into polymeric coatings is used to improve water absorption of wood surfaces. Two approaches are utilised to integrate the nanoparticles into the coatings, namely solution blending and in situ addition [149]. The first approach (solution blending) is when a solvent combines with the polymer before being dispersed onto the wood surfaces. This physical method can be applied through dipping, brushing and spraying [150]. Wu et al. [151] reported that a superhydrophobic coating was constructed on the surface of poplar wood with a contact angle of up to 158.4° through the waterborne UV lacquer product (WUV) which was modified by ZnO nanoparticles and stearic acid. Compared with WUV, the water resistance of zinc stearate/waterborne UV lacquer super-hydrophobic coating (ZnSt2 /WUV) was stronger, which was conducive to prepare superhydrophobic coatings in an easy and environmentally friendly. Interestingly, a water-based varnish added with TiO2 nanoparticles was used to evaluate the finishing of nine tropical wood species [152]. It was found that the incorporation of TiO2 nanoparticles decreased the values of water absorption and after a year of weathering exposure, the varnish with no added TiO2 nanoparticles degraded completely, while the modified varnish film endured. Other examples of superhydrophobic wood coatings which were successfully prepared are lignin-coated nanocrystalline cellulose (L-NCC) particles/polyvinyl alcohol (PVA) composite paint system [153], UV-light curable methacrylic-siloxane-cellulose composite coatings [154], Fe 3+ -doped SiO2 / TiO 2 composite film [155] and polydimethylsiloxane (PDMS)/silica hybrid coating system [156].

The second approach is the in situ addition or a chemical process which involves compound addition directly to monomers and subsequent polymerisation. The nanoparticles are synthesised in situ by chemical reactions on the wood surface such as hydrothermal methods or solgel deposition. Gao et al. [157] applied a simple and effective method in preparing superhydrophobic conductive wood surface with super oil repellency using AgNPs modified by fluoroalkyl silane. The multifunctional coating could be commercialised for various applications, especially for self-cleaning and biomedical electronic devices. In another study, bamboo was treated using ZnO sol, and the ZnO nanosheet networks were grown hydrothermally onto the bamboo surface and subsequently modified with fluoroalkyl silane [158]. The successfully treated bamboo exhibited superior properties such as robust superhydrophobicity, stable repellency towards simulated acid rain, UV-resistant and fire-resistant. Similar superior properties were obtained when bamboo timber prepared by the hydrothermal deposition of anatase TiO2 nanoparticles and further modified with octadecyltrichlorosilane [159]. Superhydrophobic wood surfaces can also be prepared using approaches such as layer-by-layer [160] assembly of polyelectrolyte/TiO2 nanoparticles multi-layers and hydrophobic modified with perfluoroalkyltriethoxysilane (POTS) [161], spray coating of a waterborne perfluoroalkyl methacrylic copolymer (PMC)/TiO2 nanocomposites onto the PDMS pre-coated substrate [162] and a one-step hydrothermal process using tetrabutyltitanate (Ti(OC4 H 9 ) 4 , TBOT) and vinyltriethoxysilane (CH2 CHSi(OC2 H 5 ) 3 , VTES) as a co-precursor [163]. Even a biomimetic approach as to produce a lotus-leaf-like SiO2 superhydrophobic bamboo surface based on soft lithography was successfully carried out [122].

Nanoadditive for Mechanical Properties Improvement

The inorganic particles integrated into organic polymers are commonly used in wood coatings to increase the mechanical properties. As fillers, the rigidity and hardness of the inorganic materials are combined effectively with the polymer’s processability. The inorganic particles when apply in micron size have disadvantages such as they reduce the flexibility of the material and decrease the transparency of the coating system [164]. The utilisation of the inorganic particles in nanosize increases the surface area and the ratio of the interfacial area, which subsequently influences the properties of the raw material [165]. Recent studies have investigated on using nanocellulose as a renewable reinforcement to develop a bio-based nanocomposite coating system with improved performance. Nanocellulose was surface modified due to the issue of incompatibility with the polymer matrix. The addition of TEMPO-oxidised cellulose nanofibres improved the mechanical properties of the WPU coating [144, 166]. In the case of the non-polar polymer matrix [167], nanocrystalline cellulose was modified by two methods, with acryloyl chloride or a cationic surfactant [167]. An increase in NCC loading level up to 2% increased hardness, elastic modulus, and tensile strength.

Nanosilica is another common nanoparticle that is applied for the improvement of mechanical properties. Among the advantages of using nanosilica are its high hardness and can easily be chemically modified to improve its compatibility with the polymer matrix. A recent study by Meng et al. [168] reported castor-oil-based waterborne acrylate (CWA)/SiO2 hybrid coatings with organic–inorganic covalent cross-linked network structures were prepared via solgel and thiol-ene reactions. The finding showed that beside the emulsions had good stability, the thermal and mechanical properties of the coating improved significantly at 10 wt% of SiO2 . The improvement of mechanical properties with nanosilica addition was also described in other coating system such as waterborne nitrocellulose [169] and acrylate [170].

Nanoadditive for UV Absorption Improvement

The process of wood photodegradation begins directly after being exposed to solar light, and then the colour changes and progressive erosion of the wood surface occur. The UV radiation is capable of photochemically degrading the polymer structure components of wood (lignin, cellulose and hemicellulose) [171]. The photodegradation process usually results in reduced water resistance of wood and wood-based materials which lead to further biodegradation under outdoor exposure conditions. The intense damage to materials due to the UV component in solar radiation can be prevented by using light-stabilisation technologies, surface coatings or by replacing these materials with materials that are more resistant against UV radiation [172]. Nanoparticles can be utilised to improve the UV resistance for solvent, waterborne and UV coatings in order to protect the wood surfaces. Nanoparticles that contain functional coatings to achieve UV-blocking properties offer a high level of protection against UV without affecting the transparency of the surface. The small size of the nanoparticles gives a significant increase in effectiveness of blocking UV light compared to natural material due to their large surface area-to-volume ratio.

The use of UV radiation absorptive coatings serves to prevent lignin degradation from UV light. Among the nanoparticles used as UV absorbers are mainly TiO2 и ZnO. Wallenhorst et al. [173] reported a system composed of a Zn/ZnO coating and additional polyurethane sealing strongly reduced photodiscolouration of the wood surface and proved to be chemically stable. The combination of benzotriazole (BTZ) and ZnO nanoparticles was applied as the UV absorbers in acrylic-based bamboo exterior coatings [174]. Strong synergistic effects were detected in the BTZ–ZnO coatings, especially for the 2:1 ratio formulation. The coating system provided high resistance to photodegradation and effectively inhibited photodiscolouration of the bamboo substrates. Another mixture of benzotriazoles, hindered amine light stabilizers (HALS), and ZnO nanoparticles in thick-film waterborne acrylic coating also gave the most positive effect in UV protective surface modification when applied to oak wood [175]. The mixture of benzotriazoles, HALS and both TiO2 and ZnO nanoparticles was confirmed as one of the most effective treatments for colour stabilisation of wood due to UV and VIS spectrums. It was reported that wood specimens coated with rutile TiO2 and a mixture of methyltrimethoxysilane and hexadecyltrimethoxysilane showed superior weathering performance and improved resistance to surface colour change and weight loss [176]. TiO 2 coating also was found to apparently enhance the colour stability of wood during UV light irradiation without water spray. However, the adjacent wood surface degraded because of the photocatalytic activity of TiO2 [177].

Nanoadditive for Fire Retardancy Improvement

The flammability of wood and non-wood products has restricted utilisation, with fire safety being a major concern for the various applications. To overcome the inherent deficiencies and use of wood and non-wood in a safe manner, the flame retardant properties need serious consideration. Nanoparticles have recently been used to produce the nanocomposites for the improvement in fire retardant properties. The utilisation of nanoparticles, either alone or in combination with conventional fire retardants, serves to reduce the ignitability of wood. The nanosize and high surface area of nanomaterials make them more effective at low concentrations than other conventional compounds which are an enormous advantage industrially and economically. The surface modification is necessary for nanoparticles to achieve better compatible and homogeneous dispersion. TiO 2 coated wood was found to be capable in reducing the flammability of the wood and the spreading of the flame, as compared to the uncoated sample [178]. The ZnO–TiO2 -layered double-nanostructures had been synthesised on a bamboo substrate [179]. The findings showed that the oxygen index increased from 25.6 to 30.2% after being covered with a ZnO–TiO2 coating, which revealed a significant enhancement of its flame retardant property. Layered double hydroxides [180] can absorb a large amount of heat, dilute the concentration of flammable gas, and absorb harmful acid gases during the decomposition process; therefore, it is an excellent flame retardant. Yao et al. [180] applied nanomagnesium aluminium layered double hydroxide (Mg–Al LDH) to bamboo in an in situ one-step process and found that the total heat release and total smoke production were reduced by 33.3% and 88.9%, respectively, compared to those of samples without Mg–Al LDH. Wang et al. [181] introduced zinc-aluminum layered double hydroxide (Zn–Al LDH) nanostructures to wood and found that the peak heat release rate (PHRR) and total smoke production were reduced by 55% and 47%, respectively, compared to those of the pristine wood [181]. Nanostructured carbon materials such as graphene was also proven to have a great potential to be used as an effective fire retardant in wood and wood-composite materials for surface protection against fire [182].

Wood Durability

Wood is such a versatile material that finds its use in various fields like construction, furniture and artwork [183,184,185]. Wood is applied as a construction material due to its high strength-to-weight ratio, eco-friendly characteristic, aesthetic appearance and biodegradability feature. Unfortunately, wood is very sensitive to biological attacks, especially by decay fungi and insects [186, 187]. Wood also gets affected by exposure to UV-radiation, fire and moisture [188]. Moisture can cause wood warping, cracking and dimensional instability. The wood degradation can cause aesthetical and internal structural damages. The degradation of wood leads to immeasurable losses each year. Besides, the growth of decay fungi on wood structural will trigger health problem to human including allergies, respiratory symptoms and asthma especially after prolonged indoor exposures [189]. Therefore, the associated issues related to wood cannot be simply overlooked. Preservation of wood using chemical is the effective way to protect and prolong the service life of wood.

Over the last decades, many chemical preservatives have been developed and used to protect wood against biodegradation agents [188, 190]. Unfortunately, most of these chemical preservatives may pose serious effects to human, living organisms and environment due to their accumulation in soil and ecosystems [191]. Chromated copper arsenate (CCA) is one of the chemical preservatives widely used since the middle 1930s and effectively protects wood against decaying fungi, termite and insect borer. However, CCA was shown to be toxic to human and environment [192,193,194]. A similar issue is also faced by another chemical, i.e. pentachlorophenol (PCP). It was considered to be hazardous to human health; thus, its production and uses were banned in many countries [195].

In response to these issues, a new series of chemical preservatives claimed as safe and less-polluting are being introduced. These chemical preservatives can be obtained from plant extract or produced synthetically and have plant bioactive compound properties. For instance, pyrethroids, derived from pyrethrum flower (Chrysanthemum cinerariifolium ), have a potent insecticidal activity and can now be produced synthetically. Unfortunately, these chemicals were found easily degradable by light and temperature, and have narrow efficiency spectrum [196]. Other limitation of organic pesticides is that most of them dissolve in organic solvents and cannot be formulated as water-based wood preservatives. Therefore, smart and intelligent organic pesticides delivery system is crucial. Through a smart delivery system, biocides can be delivered in a controlled and targeted manner. This will reduce hazards to human and environment [17].

Wood treatment via nanotechnology method can improve wood durability against biodegradation agents and weather [14, 197, 198]. The main advantage of applying nanoproducts to wood is its unique ability to penetrate deeply in wood structure [14, 199], thus improving durability properties that result in a long life time service. On the other hand, complete penetration with uniform distribution of nanoproducts can also be achieved [200]. To date, many ready-to-use nanoproducts (nanopreservatives) for wood protection are available in the market, while some of them are still in the research and development stage. Generally, nanoproducts used to protect wood can be classified into two types, namely nanocapsules and nanomaterials. Nanocapsule refers to the pesticides embedded in a polymeric nanocarrier, while nanomaterial is nanosized metals which can be directly impregnated into wood [201].

Biocide Enhancement Property via Nanoencapsulation

Encapsulation of pesticides into polymeric nanocarriers is one of the promising nanotechnology techniques in improving the impregnation of wood with pesticides. This technique is designed to increase the solubility of poorly water-soluble pesticides and to release pesticides in a slow manner [202]. Encapsulation allows those low solubility pesticides to disperse easily in solid polymeric nanoparticles. The polymer can then be suspended in water and applied to wood via conventional water-based treatments [149]. Encapsulation is also able to protect the hydrophilic active ingredient from excessive leaching [19]. Due to the small diameter of capsule, it can be easily incorporated and penetrated into the cell wall of the wood. This accordingly improves the durability of treated wood against biodegradation agents. Not only this technology can deliver pesticides safely, it can also prolong the pesticide lifespan, resulting in extended protection for the wood [203].

Encapsulation of pesticides is a bottom-up approach. It can be carried out through several techniques such as nanoprecipitation [17, 204,205,206], emulsion-diffusion [207] and double emulsification [208] (Table 3). The materials used as polymeric nanocarriers can be derived from natural polymer, synthetic polymer or combination of both [209]. For instance, natural polymer includes cellulose, starch, alginates, silica and halloysite. The synthetic polymer usually used as polymeric nanocarriers includes poly(vinyl acetate), poly(methyl methacrylate), poly(lactic acid), etc. (Table 3).

A previous study by Liu et al. [18, 216] successfully encapsulated tebuconazole and chlorothalonil into polyvinylpyridine and polyvinylpyridine-co-styrene using the impregnation method. The particle size of capsules obtained was between 100 and 250 nm. They impregnated a suspension of the capsules into sapwood of southern yellow pine and birch using conventional pressure treatments. The treated wood was then exposed to brown-rot (Gloeophyllum trabeum ) and white-rot (Trametes versicolour ) fungi for 55 days. The results showed great resistance against both decay fungi.

Salma et al. [17] used the nanoprecipitation technique to encapsulate tebuconazole. The polymer capsules containing tebuconazole were prepared from amphiphilic copolymers of gelatine grafted with methyl methacrylate with the size diameters ranging from 200 to 400 nm or 10 to 100 nm depending on core/polymer shell mass ratio. The encapsulated tebuconazole was reported to be able to preserve wood against a brown rot fungus. On the other hand, the formulation system developed by Salma et al. [17] is flexible and can be easily modified using copolymerisation of other acrylic monomers like hydroxyethyl methacrylate. This indicates that tebuconazole release rate can be tailor-made. However, the disadvantage of this nanocapsules is that they are prone to aggregation, which reduces the delivery efficiency of the nanocapsules into the wood.

Can et al. [217] successfully encapsulated nano silver into polystyrene-soybean co-polymer. In their study, the Scots pine was impregnated with the capsules and tested against white-rot fungi (Trametes versicolor ). The finding obtained from the study indicates that the soybean oil, polystyrene and nanosilver played important roles in the synergistic effect of increasing the decay resistance of Scots pine.

Impregnation of Metallic Nanoparticles for Durability Enhancement

Metallic nanoparticles have been used to protect wood against biodegradation agents and weathering since decades ago [197, 218, 219]. Nanoparticles offer better characteristics than their bulk form, mainly because of their reduced size that leads to high specific surface area-to-volume ratio, uniform size distribution and good stability. Due to its very small size, nanoparticles can penetrate deeply and uniformly into the wood pores leading to a protection of wood [197, 220]. In addition, dispersion stability is improved because of the size and also by addition of surfactant [221]. Dispersion stability coupled with small particle size may greatly improve the following aspects:(1) preservative penetration, (2) treatability of wood, (3) stability of finishes and coating products, (4) low viscosity, and (5) non-leachability [222, 223]. Besides, it can enhance compatibility with binders thereby being able to increase the affinity with wood polymers [197, 224].

Metallic nanoparticle can be prepared by altering the particulate size of metal via chemical reactions, mechanical treatment, heating or refluxing. To date, a lot of nanoparticles have been used for wood protection. Metallic nanoparticles mainly copper, silver, boron and zinc exhibited a good performance against white-rot and brown-rot but less efficient against mould [219]. Диоксид титана (TiO 2 ) is another nanoparticle that has a good potential to be used as wood preservative. The potential of TiO2 is related to its antibacterial and antifungal [14, 225] and UV-resistant properties [225, 226]. However, the study on wood treated with TiO2 is still under preliminary investigation [14, 225]. Table 4 lists the works on the utilisation of TiO2 for wood preservation. The distribution of TiO2 in wood was studied by Mohammadnia-Afrouzi et al. (Fig. 3).

SEM images taken from the tangential section of nano-TiO2 wood treated samples:the 0% moisture content (MC)/0.5% concentration (a1), the 25% MC/0.5% concentration (A2), the 0% MC/1% concentration (A3), the 25% MC/1% concentration (A4), the 0% MC/1.5% concentration (A5) and (25% MC/1.5% concentration. Source :Afrouzi et al. [227]

Copper is an essential biocide for wood protection. However, copper alone fails to protect wood against copper-tolerant wood destroying fungi. Copper nanoparticles is a new generation of wood preservative-based copper. The use of copper nanoparticles instead of conventional copper shows improved durability of wood against decay fungi [230]. This shows that copper nanoparticles can be used to protect wood without the presence of chromium and arsenic [230].

Cristea et al. [15] studied the effects of the addition of ZnO nanoparticles and silver nanoparticles into exterior wood coatings. The purpose of the study is to improve the durability and wood protection through UV shielding. Besides providing an efficient protection against UV, the mechanical properties of wood such as hardness, adhesion strength, the abrasion resistance and the barrier effect for water vapor diffusion were slightly improved.

The mixture of ZnO nanoparticles with silver nanoparticles was able to protect wood from weathering problem such as UV rays [231]. They impregnated sapwood of cottonwood using three different concentrations of mixture by full-cell process. The samples were then exposed to natural weathering. The colour changes of treated wood samples were measured using spectrophotometer. The wood treated with ZnO nanoparticles alone was used as a control. The finding indicates that wood treated with the mixture of ZnO nanoparticle and silver nanoparticles has the lowest colour changes compared to the samples treated with each metallic nanoparticles.

In another study, Mantanis et al. [197] treated black pine wood with ZnO, zinc borate and copper oxide nanoparticles under vacuum. They used acrylic emulsion to force the metallic nanoparticles into the wood structure to avoid leaching. The durability of treated wood against mould decay fungi and subterranean termites was evaluated. Results showed that wood treated with zinc borate slightly inhibited the mold, while the other metallic nanoparticles did not exhibit mould. A similar finding was reported by Terzi et al. [232] that ZnO nanoparticles did not exhibit the mould growth on wood specimens. However, all metallic nanoparticles significantly inhibited white-rot fungi and termite.

Another study shows that metallic nanoparticles are able to improve fire retardant properties of wood. Francĕs et al. [16] studied the effect of SiO2 , TiO 2 and ZnO2 infiltrated into pine veneers. They reported that veneer treated using 3 wt% of SiO2 was most effective to improve the fire retardant behaviour.

Despite the remarkable advantages of nanotechnology in the wood preservation sector as discussed above, the fundamental understanding on synthesis, processing and characterisation of nanocapsules and metallic nanoparticles for wood protection still needs to be improved. The most interesting characteristics need to be considered during the design and development of nanocapsules or metallic nanoparticles for wood protection are as listed in Table 5.

Potential of Nanocellulose-Based Material in Energy Sector

Energy is an important resource that has a strong correlation between economic growth and development [233]. Today, the main energy sources are from fossil fuels and hydroelectric sources, which are very harmful to environment because they can cause climate change and global warning as well as ozone layer depletion, pollution, greenhouse gases emission and ecological destruction [234,235,236]. About 80% of carbon dioxide (CO2 ) emissions in the world are from energy sector and technology advancement is required to develop sustainable renewable energy resources to reduce the CO2 emissions as well as to overcome the global warming impact on life and health in line with the needs of accelerating technology development [234, 237].

In order to minimise the environmental effects, a sustainable and low-cost energy efficient carbon-based material has been explored as a potential to replace some conventional materials in the fabrication of energy devices. One of the natural carbon-based materials is cellulose which is the most promising natural polymer with many usages, including energy [237].

Nanotechnology is one of the advanced technologies that have the potential and prospect to fulfil the demand to create clean and green energy. Developing this new material in nanoscale enables new application and its interaction with current energy technology that would revolutionise the energy field from usage to supply, conversion to storage and transmission to distribution [238]. By adapting this nanotechnology, it will have high impact on the development of clean and green energy and benefits the environment and natural resources [239].

According to Serrano et al. [234] and Hut et al. [235], most promising application of nanotechnology for energy conversion is mainly focused on solar energy, conductive materials, solar hydrogen, fuel cells, batteries, power generation and energy devices. Understanding the structural and morphological properties of nanomaterial is essential to obtain the proficiency and sustainability for many applications. The greatest application of nanotechnology in energy generation is solar energy using photovoltaic (PV) cells which focuses on harnessing efficiency [233]. Consumption of energy generated from this solar cell using natural resources will reduce the usage of fossil fuel and decrease the pollution towards creating environmentally friendly and green energy [239]. In addition, the development of nano devices using solar cell could improve the existing materials efficiency as well as reducing manufacturing cost that might increase the economic growth [236].

Nanotechnology has been used in various applications to improve the environment, to solve humanity problems and to produce more efficient and cost-effective energy, such as generating less pollution during products manufacturing, producing solar and fuel cells at a competitive cost, hydrogen production, cleaning up organic chemicals polluting groundwater and overcoming the problem of energy sufficiency, climate change and diseases as well as to reduce the dependency on non-renewable energy sources [233, 235, 240].

Nanocellulose-Based Material for Solar Energy

Solar energy is available in various parts of the world and can be captured from the sun with 15,000 times more energy yearly. This energy source can be used in different ways:photovoltaic (PV) technology, solar thermal systems, artificial photosynthesis, passive solar technologies and biomass technology, which are used to produce electricity, steam or biofuels [234, 235].

In future, nanotechnology might contribute to develop an effective and low-cost system for production, storage, and transporting of energy [235]. According to Serrano et al. [234] and Hut et al. [235], current photovoltaic (PV) market is based on silicon wafer-based solar cells (first generation) and thin film layers of semiconductor materials (second generation). Current drawback of using solar cells is the cost of manufacturing mainly on the high cost of conventional PV cells with poor energy absorption efficiency (less than 40%) [233].

Nanocellulose shows a good potential to be used in the solar energy system due to its renewability, biodegradability, biocompatibility, broad modification capacity, adaptability and versatile morphology [241, 242]. Low cost, flexible and porous substrate of cellulose could be used to produce solar cells. Nanofibrillated cellulose (NFC) with size as low as 4 nm could become the excellent candidate for production of ultrathin paper for use in solar cell component to store the energy [235]. Klochko et al. [243] used nanocellulose from biomass for the development of biodegradable eco-friendly flexible thin film as a thermoelectric material. The thin film was used to convert low-grade waste heat from sun radiation into electricity at near-room temperature.

Nanocellulose-Based Conductive Materials

Conductive materials allow the flow of electrical current which is needed in the fabrication of energy devices. There are many types of conductive materials such as conductive polymers and conductive carbon materials (e.g. carbon nanotubes, graphene, and carbon black) and metallic particle with different levels of conductivity. These conductive materials can be combined with nanocellulose to form novel composites. The process of production conductive nanocellulose is shown in Fig. 2. There are two major strategies involved in nanocellulose based conductive hybrids fabrication process; one is coating of conductive materials layer on the surface of nanocellulose substrates, and another one is mixing the conductive materials inside the nanocellulose substrate to make composite [237]. Conductive polymers are an alternative to metallic materials because of their good electrochemical performance, light in weight and low cost. One of the most promising conductive polymers is polyaniline (PANI) because of its simple route of synthesis, controllable conductivity and high specific capacitance [244].

Nanocellulose-based conductive materials are developed for supercapacitors and energy storage device applications using various types of method such as in situ polymerisation, doping, coating, inkjet printing and in situ depositing [68, 244,245,246]. Modification of the existing supercapacitor by adding nanocomponents has increased its ability to store large amount of energy with longer time of supply [238].

Besides that, nanocellulose-based composite membrane electrodes can be developed via in situ polymerisation of nanocellulose using conductive components via a simple filtration unit (Fig. 3). A well-mixed conductive materials/nanocellulose composite membrane is left on the filter after the liquid has passed through the filter and air-dried composite membrane can be peeled off from the filter membrane for further use as supercapacitors [244].

Nanocellulose for Energy Storage

The potential application of nanocellulose for energy storage application has gained much attention recently. This is due to its nanoscale dimension, high surface area-to-volume ratio, and rich with hydroxyl group, which make their surface chemistry easily modifiable for composite processing. The most important aspect in energy storage is to develop nanocellulose with conductivity and flexibility properties. It can be achieved by adding conducting polymers such as polyaniline and polypyrrole. For example, the nanocellulose/polyaniline composite film is widely used as paper based sensors, flexible electrode, and conducting adhesive [68, 247,248,249]. Razaq et al. [250] manufactured electrodes from the composite of nanocellulose/polypyrrole and carbon filament for paper based energy storage devices. Wang et al. [248] reported that their devices which developed using composite of nanocellulose/polypyrrole provide high charge and discharge rate capabilities, high cell capacitances, and cycling performance.

Nanocellulose-Based Materials for Lithium and Vanadium Battery

High demand on flexible portable electronic devices recently such as smart phone, electrical vehicles, laptops, and even the grid energy storage causes increasing demand on rechargeable lithium-ion battery (LIBs) [251] and supercapacitors [252]. LIBs are one of the most ideal energy storage candidates for electronic devices, due to their high energy density, moderate power density and cycle stability. In LIBs, electrolyte is important for lithium-ion (Li + ) transfer between anode and cathode. Organic liquid electrolyte is used for LIBs system, but it can pose tremendous safety concern due to the high toxicity and flammability. Solid-state electrolyte has become of interest because it demonstrates obvious advantages of low flammability and low toxicity [253, 254]. According to Janek et al. [255], solid-state electrolyte is classified as solid polymer electrolyte (SPE) and inorganic solid electrolyte (ISE). However, SPE offers the advantages of easy processing and flexibility [255].

Qin et al. [256] developed SPE by incorporating polyethylene oxide (PEO) with nanofibrillated aerogel and bis(trifluoromethanesulphonyl)imide lithium salt (LiTFSI). The results showed that the ionic conductivity properties of SPE were significantly enhanced due to the negatively charged nanofibrillated cellulose. The results also proved that the fabricated SPE is electrochemically stable, mechanically robust and thermally stable as well as flexible, expected for use in flexible electronic devices.

Nair el at. [257] fabricated nanocellulose-laden composite polymer electrolyte for high performing lithium-sulphur batteries using a thermally induced polymerisation method. The composite polymer electrolyte demonstrates excellent ionic conductivity, thermal stability up to more than 200 °C and stable interface towards lithium. The electrolyte also has stable cycling profiles which are attributed to significant reduction of the migration of polysulphide towards anode by entrapment of nanocellulose in the polymer matrix.

Another study was carried out by Zhang et al. [258] on robust proton exchange membrane developed using sulphonated poly(ether sulphone) reinforced by core–shell nanocellulose for vanadium redox flow batteries (VRFBs). It was found that with the incorporation of silica–encapsulated nanocellulose, the proton exchange membrane exhibits outstanding mechanical strength of 54.5 MPa and high energy efficiency above 82% at 100 mA cm −2 , which is stable during 200 charge–discharge cycles. Proton exchange membrane is one of the key components in VRFBs. It functions as the separator to avoid vanadium ions crossover. It also acts as proton conductors that contribute to high voltage efficiency in VRFBs [259].

Nanocellulose-Based Materials for Flexible Supercapacitor

Supercapacitor or known as electrochemical double-layer capacitor or ultracapacitor is another versatile energy storage system that has gained the attention of researchers worldwide [260]. With the high power density, long life cycle, simple principles, low maintenance, portability, stable performance and fast charge/discharge rate make supercapacitors capable of filling the gap between batteries and conventional capacitors [260]. These properties offer a promising approach to meet the growing power demands.

Electrode is a very important component in supercapacitor. It requires good electrochemical performance and flexibility especially for preparing a high-performance flexible supercapacitor. Him et al. [261] and Zhe et al. [262] found that graphene and nanocellulose are excellent flexible electrode materials for supercapacitors. Nanocellulose has been used as a substrate material because of its good biodegradability, mechanical strength, flexibility, and chemical reactivity. The porous structure and hydrophilicity of nanocellulose can facilitate the attachment of other materials for example graphene in their fibrous network structure [263]. At the same time, the abundance of hydroxyl groups on the nanocellulose surface enables the interaction of nanocellulose with other polymer to form strong composites [264].

Khosrozadeh et al. [265] developed an electrode for supercapacitor using nanocellulose-based polyaniline/graphene/silver nanowire composite and after applying it for 2400 cycles, at a current density of 1.6 A/g, the supercapacitor showed a power density, energy density and capacitance of 108%, 98% and 84%, respectively. This shows that the electrode has an excellent cyclic stability and good mechanical flexibility. On the other hand, Ma et al. [266] developed an electrode using bacteria cellulose/polypyrrole coated with graphene. The prepared electrode has a good mechanical flexibility in which it can bend at any angle. The area capacitance and energy density can reach 790 mF cm −2 and 0.11 mWh cm −2 , respectively, when assembled into symmetric supercapacitors. The nanocellulose-graphene electrode can be fabricated using chemical cross-linking or physical cross-linking method [267, 268]. Nanocellulose as an electrode component of supercapacitor also plays the role of internal electrolyte reservoir. This is because nanocellulose can provide an effective way for ion transport. The high pore structure and hydrophilic properties of nanocellulose make it easier to transport electrolyte ion [261].

Nanocellulose-Based Paper for Electronic Devices

Nanocellulose-based paper is a green substrate that can be used for electronic and optoelectronic devices. Currently, commercial paper has relatively rough surface and weak mechanical properties which can be quite problematic for electronic device fabrication [269]. Most of the electronic device’s fabrication use non-biodegradable and non-recyclable component such as plastics, glasses and silicones as substrates [270]. Formation of nanocellulose-based paper from NFC via simple filtration method can produce mechanically strong and low coefficient thermal expansion paper as an alternative to commercial paper [6, 269]. According to Li and Lee [270], transparent nanocellulose-based paper for electronic devices has been designed and being applied for electrochromic, touch sensor, solar cells, transistors, organic light-emitting diodes (OLEDs), gravure printing proofer and radio-frequency identification (RFID).

One of the applications of transparent nanocellulose paper is for the production of flexible electronics materials through printing circuit directly on the surface of substrates via coating or thermal deposition techniques. Firstly, the fabrication of flexible electronics was built on special silicon wafer that allows the silicon nanomembranes (Si NMs) to be released and then transferred to NFC substrate with an adhesive layer, and the device was completed by photoresist patterning and dry etching steps as illustrated in Fig. 4 [271].

Schematic illustration of the generalised fabrication routes to nanocellulose-based conductive hybrid. Source :Du et al. [237]. Reproduced with permission of Elsevier

Moreover, NFC also is the main substrates for organic light-emitting diodes (OLEDs) (Fig. 5). Okahisa et al. [272] reported that the OLEDs device was fabricated on wood-based nano fibrillated cellulose (NFC) composite.

Filtration procedure to fabricate nanocellulose-based composite membrane [supercapacitor (SC)]. Source :Hsu and Zhong [244]

Potential of Nanocellulose-Based Composite for Development of Sensor

Nanocellulose has been widely used to develop novel sensors and improve the sensitivity of sensors. In food industry for example, sensors have become an important tool to protect humans from health hazards and risks caused by the food contaminants. Sensors can help to quickly identify mycotoxins, pathogens, heavy metals, pesticides, metal ions, and so on in food. In addition, sensor technology can overcome the complicated, laborious, and time consuming process using expensive instrument that usually requires well-trained personnel [273, 274]. Sensor also provides rapid and sensitive food safety detection.

In the last decade, plenty of sensors (electrochemical sensors, biosensors and chemical sensors) have been successfully developed as alternative or as complementary detection tools for the rapid and sensitive detection [275,276,277]. However, conventional sensors were developed using plastics, petrochemical-based products and inorganic material which lead to environmental problems. Moreover, issues such as green gas emission, toxicity and sustainability of the materials are becoming increasing. Therefore, the demand for sustainable sensor devices has increased rapidly in recent years.

Nanocelluloses from plants and bacteria have shown promising potentials due to their excellent physical, thermal, mechanical, optical and physical properties, which are important for fabricating high-performance sensor devices. These properties make nanocellulose more preferred as biomaterials since it can enhance the selectivity and sensitivity of sensors for the detection of analytes. On the other hand, the adhesion properties of nanocellulose prevents the leaching problems of immobilised reagents. Thus a remarkable improvement can be obtained for the long-time stability of the sensor. Besides, the hydroxyl –OH groups on nanocellulose can be modified for the incorporation of binding sites for the selective adsorption of different analyte species [278]. The combination of those characteristics makes the nanostructured nanocellulose fibres an ideal building block for conjugation with other functional materials [248, 279, 280] (Table 6).

Development of Biosensors

Kim et al. [286] immobilised enzymes candida rigosa lipase into the different cellulose nanocrystals. The findings indicate candida rigisa lipase absorbed on nanocellulose was relatively higher compared to that of microcellulose. This can be related to the high surface area on nanocellulose and thus increase the ionic interaction between nanocellulose anionic group and candida rigisa lipase. In this study, they found that the half-life of the candida rigisa lipase immobilised in nanocellulose increased 27 times higher compared to in free form. Besides, the stability of enzyme also increased (Fig. 6).

Flexible electronics production process on NFC substrate. Source :Sabo et al. [271]

Another group of researchers, Edwards et al. [287] studied the kinetic profiles of tri- and tetrapeptides substrate of elastase for the fabrication of elastase biosensor whereby known as human neutrophil elastase (HNE) and porcine pancreatic elastase (PPE). To develop HNE and PPE, immobilised tri- and tetrapeptides were used into cotton cellulose nanocrystals. They found that 2 mg of tripeptide conjugated cotton cellulose nanocrystals in 1 h was able to detect 0.03 U mL −1 PPE, while 0.2 mL tetrapeptide conjugated cotton cellulose nanocrystals over 15 min could detect 0.05 U mL −1 HNE activity. Incani et al. [288] fabricated a biosensor by immobilising glucose oxidase (GOx) enzyme in a nanocellulose/polyethyleneimine (PEI)/gold nanparticles (AuNPs) nanocomposites. The AuNPs were adsorbed on the cationic PEI and nanocellulose. The Fourier Transform Infrared (FTIR) spectra confirmed that GOx was successfully immobilised on the polymer composites (Fig. 7).

Flexible display (OLEDs) on NFC substrate, a Source :Okahisa et al. [272]. Reproduced with permission of Elsevier. Flexible electronics on NFC substrate, b Source :Sabo et al. [271]

Abd Manan et al. [289] successfully developed biosensor based on nanocrystalline cellulose (NCC)/cadmium sulphide (CdS) quantum dots (QDs) nanocomposites for phenol determination. They modified the NCC with cationic surfactant of cetyltrimethylammonium bromide (CTAB) and further decorated with 3-mercaptopropionic acid (MPA) capped CdS QDs as a scaffold for immobilisation of tyrosinase enzyme (Tyr). The TEM images of NCC and CTAB-NCC (Fig. 8a, b) indicates that agglomerated whiskers-like structure of NCC was not affected by modification, while the MPA QDs are of spherical shape (Fig. 8c). The FESEM images of CTAB-NCC nanostructured film (Fig. 8d) exhibited a homogenous, uniform and dense fibrous structures aggregated, while for CTAB-NCC/QDs nanocomposites film (Fig. 8e), the CdS QDs were appeared as like tiny white dots. EDX analysis shows the presence of respective elemental of carbon (C), oxygen (O), sulphur (S) and cadmium (Cd), indicating the CdS QDs was successfully attached into the CTAB-NCC film. The test finding against phenol shows the biosensor exhibits good linearity towards phenol in the concentration range of 5–40 µM (R2 = 0.9904) with sensitivity and limit of detection of 0.078 µA/µM and 0.082 µM, respectively.

The TEM images for a NCC, b CTAB-NCC, c MPA-QDs, the FESEM micrograph of d CTAB-NCC nanostructures film, e CTAB-NCC/QDs nanocomposites film, f EDX analysis of CTAB-NCC nanostructured film, g CTAB-NCC/QDs nanocomposite film (Source :Abd Manan et al. [289]). Reproduced with permission of Elsevier

In the food industry, sensors are used to monitor the quality or freshness of food. Moradi et al. [290] developed a pH sensing indicator based on bacterial cellulose nanofibres for monitoring freshness of fish. They used carrot anthocyanins as an indicator. The fabricated sensor displayed wide colour differences from red to gray over the 2–11 pH range. The colour changes were distinguishable whereby deep carmine colour indicates fresh fish, charm pink colour indicates fish is best to eat immediately, and spoiled fish is indicated by jelly bean blue and khaki colours.

Development of Chemical Sensors

Nanocellulose hydrogels structure was previously used to immobilise sulphur and nitrogen co-doped graphene quantum dots as a low-cost sensor for detecting the laccase enzyme [291]. Laccase is the multicopper oxidase family of enzyme. It is involved in the monoelectronic oxidation of several aromatic compounds and aliphatic amines. Therefore, it is usually used in decolouration and coloration products [292, 293]. Therefore, monitoring of laccase activity in commercial products is of great interest. From this study, the authors found the sulphur and nitrogen co-doped graphene quantum dots were self-organised via electrostatic interactions.

Faham et al. [294] described the development of a nanocellulose-based colorimetric assay kit for smartphone sensing of iron, Fe(II) and iron-chelating deferoxamine drug (DFO) in biofluids. They embed curcumin in a transparent bacterial cellulose nanopaper, as a colorimetric assay kit. The assay kit was then used for monitoring of iron and deferoxamine as iron-chelating drug in biological fluid such as urine, blood, saliva and serum. The assay kit can be easily coupled with smartphone technology for colorimetric monitoring of Fe(II) and DFO.

Development of Electrochemical Sensors

Burrs et al. [295] demonstrated the electrochemical biosensor-based glucose for the detection of pathogenic bacteria. The conductive paper used for the development of electrochemical sensor was prepared using graphene-nanocellulose composites. Platinum was electrodeposited on graphene-cellulose composites using pulsed sonoelectrodeposition [296]. Then the sensor was fabricated by functionalising the nanoplatinum with glucose oxidase (GOx ) entrapped in a chitosan hydrogel on the conductive paper. They found that the sensor is extremely efficient for use in electrochemical biosensing with a low detection limit for glucose or pathogenic bacteria.

Ortolani et al. [297] developed an electrochemical sensing device using nanocellulose and single-walled carbon nanohorns (SWCNH) for guanine and adenine determination. Both nanocellulose and SWCNH have large surface area, good conductivity, high porosity and chemical stability. The prepared sensor showed highly sensitive and high electrocatalytic activity towards simultaneous determination of guanine and adenine. The sensor also presented a lower limit detection. Another study conducted by Shalauddin et al. [298] used hybrid nanocellulose/functionalised multi-walled carbon nanotubes (f -MWCNTs for development of electrochemical sensing. The sensor for determination of diclofenac sodium in pharmaceutical drugs and biological fluids samples were used. The presence of –OH groups in the nanocellulose was reported to provide more binding sites for different analytes which ensures an axial modulus rearrangement and incorporation of f -MWCNTs.

Toxicity of Nanomaterial

Although nanomaterial offers many good potential to various industrial sectors, its potential hazard to human and environment could not simply be overlooked [299]. The safety or toxicity issue needs to be addressed by conducting a complete study from various angles. Nanotoxicity or the study of nanomaterials’ toxicity can be classified into several areas namely oxidative stress, genotoxicity, and ecotoxicity. In humans, toxicity can occur through pulmonary, oral and dermal routes. Nanomaterials can affect humans mainly during extraction or production, handling, usage and disposal. Inorganic nanoparticles (NPs) such as ZnO and nickel oxide (NiO) are believed to be more toxic compared to organic nano materials such as nanocellulose. Digested organic NPs are less likely to induce toxicity since the by-products of digestion by stomach acid are simple sugars, although in the case of nanocellulose, the lack of enzyme in human gut capable of degrading cellulose results in the cellulose moving through the gut fairly quickly. A 90-day subchronic toxicity study on Sprague Dawley rats conducted by Ong et al. [300] indicated that no systemic toxicity attributable to 4% dietary consumption of fibrillated cellulose was observed. In the same study, a higher concentration of 30% of nanofibrillated cellulose for 72 weeks also indicated no adverse effects. When present in the air, nanoparticles can also have harmful effects to human health [301]. Multi-walled carbon nanotubes (MWCNT) are possibly one of the most studied NPs for toxicity effects. In the study, Poulsen et al. [302] found that both thick and long as well as thin and short MWCNT induced genotoxic potential and long lasting inflammation and can lead to cardiovascular disease. In contrast, a study on inhalation NCC toxicity in albino rats was conducted and showed no undesirable effects were observed at a maximum concentration of 0.26 mg/L for a period of four (4) hours [303]. At cellular level, cytotoxicity on NCC on different cell types has been studied with most studies concluded that NCC to be non-toxic to a variety of mammalian cells at concentrations below 0.25 mg/L, but can exhibit cytotoxic effects at concentrations of 0.5 mg/L and above [304,305,306,307,308,309]. Primary nanogenotoxicity refers to the possibility of nanoparticles or their by-products to damage DNA directly or indirectly. Secondary genotoxicity is caused by immune system interaction to disturbances cause by nanoparticles. A study by Akerlund et al. [310] indicated that inorganic NPs of Ni and NiO-induced cytokines inflammations which led to secondary genotoxicity in human lung epithelial cells. However, they require further investigation to understand the factors causing this secondary genotoxicity and whether such results are caused by other nanoparticles as well.

NanoTiO2 in wood coatings has been reported to have low toxicity to terrestrial organisms, and no bioaccumulation was observed [311]. Another study conducted on cerium oxide (CeO2 ) nanoparticle or ceria showed that no acute toxicity was observed for Daphnia magna and Thamnocephalus platyurus and D. rerio embryos at test concentrations of 1000, 5000, and 200 mg/L, respectively. However, the same study indicated that a significant chronic toxicity on P. subcapitata was observed with 10% effect concentrations (EC10s) between 2.6 and 5.4 mg/L [312]. Pulido-Reyes et al. [313] explained that the redox cycling between Ce 3+ и Ce 4+ is a unique chemistry of nanoceria which depends on the prevailing environmental conditions. They concluded that in most cerium oxide NP studies, the amount of surface Ce 3+ correlates with toxicity and this can be overcome by blocking the Ce 3+ sites with anions such as phosphates (PO4 3– ) which will reduce reactive oxygen species levels and overcoming oxidative stress. During and after disposal, there is a likelihood that NPs can interact with the environment, whether in soil or aquatic environment. The oxidative stress or carbon-based nanoparticle-induced toxicity is primarily of concern as this condition will affect the oxygen balance in the environment. Wang et al. [314] showed that NCCs’ activated oxidative stress in aquatic organisms (Scenedesmus obliquus algae, planktonic crustacean Daphnia magna and freshwater fish larva Danio rerio) at concentrations above 0.1 mg/L. The NCC form, morphology and concentration are believed to be the contributing factors, thus suggesting evaluation of nanocellulose ecotoxicological impacts when used at large scales. One method of reducing the undesired effect to the environment is by providing a mechanism to capture, retain or recycle the NPs during processing. Magnetic NPs (e.g. magnetite) [315] or surface modification can be used for this purpose. Almost all toxicity studies on nanoparticles recommend more research to be conducted on finding suitable analytical techniques and protocols in detecting organic NPs within biological matrices as well as mechanistic and environmental investigations to understand potential NPs risks on the ecosystem [301, 302, 310, 316].

Conclusions

The potential of nanotechnology in wood-based products sector is enormous. Nanotechnology offers the opportunity to change the landscape of wood-based products industry locally and globally. Forest itself via forest plantation can provide sustainable sources towards the creation of new generation of cellulose called nanocellulose that could offer myriads of application in various industrial fields. Besides, nanocellulose is less expensive than carbon-based material (e.g. carbon nanotube, graphene), environmentally friendly and may improve the recyclability and performance of countless products. For instance, nanocellulose can be used to improve the performance of paper and reduce the use of pulp in papermaking, thus resulting in cost saving. Nanocellulose can also be made into nanopaper or thin film for use in paper packaging or other sector such as electronics which offers alternative to non-renewable plastic. Nanocellulose used in wood composite can lead to the development of advanced composites which can be tailored to specific uses. Together with their strength properties and affordability makes them a viable solution to reduce the need for solid wood. Industrial sectors other than wood-based products could also benefit from the use of nanocellulose such as in energy device and sensors. Various nanocellulose-based products for energy storage and energy harvester applications as well as sensor have been developed at laboratory scale. In view of this interesting development, Malaysia has embarked on the production of nanocellulose from various tropical lignocellulosic materials. Unfortunately, the application of nanocellulose at commercial scale in Malaysia is still non-existent. Thus, it requires collective, concert and intensive efforts from various players that include stakeholders, industry and researchers to promote the use of nanocellulose and ensure that nanocellulose could enter the next level of application and commercialisation stage. The use of nanosized material other than nanocellulose has already benefited and also given advantage to wood-based products area which includes pulp and paper, wood composite, wood coating and wood preservative.

Доступность данных и материалов

All data and materials are available without restriction.

Сокращения

AgNPs:

Наночастицы серебра

Al 2 О 3 :

Aluminium oxide

AuNP:

Gold nanparticles

BTZ:

Benzotriazole

C:

Carbon

CCA:

Chromated copper arsenate

Cd:

Cadmium

CdS:

Cadmium sulphide

CeO2 :

Оксид церия

CH2 CHSi(OC2 H 5 ) 3 :

Vinyltriethoxysilane

CMC:

Carboxymethyl cellulose

CNT:

Углеродные нанотрубки

CO2 :

Carbon dioxide

CTAB:

Бромид цетилтриметиламмония

CTAB-NCC:

Cetyltrimethylammonium bromide-nanocrystalline cellulose

CWA:

Castor-oil-based waterborne acrylate (CWA)

DFO:

Deferoxamine drug

FESEM:

Field-emission scanning electron microscopy

f -MWCNTs:

Functionalised multi-walled carbon nanotubes

FTIR:

Fourier transform Infrared

GOx:

Глюкозооксидаза

HALS:

Hindered amine light stabilizers

HNE:

Human neutrophil elastase

ISE:

Inorganic solid electrolyte

LDH:

Layered double hydroxide

LIB:

Литий-ионный аккумулятор

LiTFSI:

Bis(trifluoromethanesulphonyl)imide lithium salt

L-NCC:

Lignin-coated nanocrystalline cellulose (L-NCC)

MC:

Moisture content

Mg–Al LDH:

Magnesium–aluminium layered double hydroxide

MPA:

3-Mercaptopropionic acid

MUF:

Melamine-urea formaldehyde

MWCNT:

Multi-walled carbon nanotube

NCC:

Nanocrystalline cellulose

NFC:

Nanofibrillated cellulose

Ни:

Никель

NiO:

Nickel oxide

НП:

Наночастицы

NW:

Nanowollastonite

O:

Кислород

OH:

Hydroxyl

OLED:

Органические светодиоды

PA:

Polyamide

PCL:

Polycaprolactone

PCP:

Pentachlorophenol

PDMS:

Полидиметилсилоксан

PE:

Полиэтилен

PEG:

Poly(ethylene glycol)

PEO:

Polyethylene oxide

PHB:

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

PHRR:

Peak heat release rate

PLA:

Polylactic acid

PMC:

Perfluoroalkyl methacrylic copolymer (PMC)

PMMA:

Поли (метилметакрилат)

PO4 3– :

Phosphates

POTS:

Perfluoroalkyltriethoxysilane

PP:

Полипропилен

PPE:

Porcine pancreatic elastase

PPG:

Propylene glycol

PS:

Полистирол

PSU:

Polysulphone

PU:

Polyurethane

PV:

Photovoltaic

QD:

Квантовые точки

RFID:

Radio-frequency identification

S:

Sulphur

SC:

Supercapacitor

Si NMs:

Silicon nanomembranes

SiO 2 :

Silicon oxide

SPE:

Solid polymer electrolyte

SPI:

Soy protein isolate

SWCNH:

Single-walled carbon nanohorns

TBOT:

Tetrabutyltitanate

ТЕМ:

Просвечивающая электронная микроскопия

TEMPO:

2,2,6,6-Tetramethylpiperidin-1-oxyl

Ti(OC4H9)4:

Tetrabutyltitanate

TiO 2 :

Диоксид титана

TMI-BNT:

Transition metal ion-modified bentonite

TNFC:

TEMPO-oxidised nanofibrillated cellulose

Tyr:

Tyrosinase

UF:

Urea formaldehyde

UP:

Unsaturated polyester

UV:

Ультрафиолет

VRFBs:

Vanadium redox flow batteries

VTES:

Vinyltriethoxysilane

WPU:

Waterborne polyurethane coating

WUV:

Waterborne

Zn-Al LDH:

Zinc-aluminium layered double hydroxide

ZnO:

Оксид цинка

ZnSt2 :

Zinc stearate

ZnSt2 /WUV:

Zinc stearate/waterborne UV


Наноматериалы

  1. Применение молибдена в стекольной промышленности
  2. Применение ниобия в сталелитейной промышленности
  3. Применение титана в часах
  4. Применение титана в фармацевтической промышленности
  5. Пигменты в бумажной промышленности
  6. Применение Индустрии 4.0 в различных секторах
  7. Автоматизация в индустрии 4.0
  8. Грузоперевозки в США – применение в поиске подержанной техники
  9. Применение 3D-печати в автомобильной промышленности
  10. Индустрия ремонта, восстановления и восстановления гидравлических систем:часть вторая