Как запустить трехфазный асинхронный двигатель от однофазного источника питания?
Запуск асинхронного двигателя 3-Φ от однофазной сети — 3 метода
В зависимости от типа источника питания переменного тока асинхронные двигатели делятся на два типа; трехфазный асинхронный двигатель и однофазный асинхронный двигатель. В большинстве промышленных и сельскохозяйственных приложений трехфазный асинхронный двигатель широко используется по сравнению с однофазным асинхронным двигателем.
Из-за дефицита электроэнергии трехфазное питание не всегда доступно для сельскохозяйственных приложений. При этом одна фаза отключается от группового оперативного выключателя (ГОС). Таким образом, в большинстве случаев доступны две из трех фаз. Но при любом специальном расположении невозможна работа трехфазного двигателя от однофазного источника питания.
Как известно, трехфазный асинхронный двигатель является двигателем с самозапуском. Так как обмотка статора трехфазного асинхронного двигателя создает вращающееся магнитное поле. Это создаст фазовый сдвиг на 120˚. Но в случае однофазного асинхронного двигателя индуцируется пульсирующее магнитное поле. Следовательно, однофазный асинхронный двигатель не является самозапускающимся двигателем. Для запуска требуется дополнительное вспомогательное оборудование.
- Похожая статья:Что произойдет, если вы подключите асинхронный двигатель 3-Φ к однофазной сети?
То же самое здесь, нам нужно сделать некоторые дополнительные меры, чтобы привести трехфазный асинхронный двигатель в однофазную сеть. Есть три метода;
- Использование статического конденсатора (метод фазового сдвига)
- Использование VFD (преобразователь частоты)
- Использование поворотного преобразователя
В этой статье мы кратко обсудим каждый метод.
Использование статического конденсатора
При подаче трехфазного переменного тока на статор трехфазного асинхронного двигателя создается сбалансированное вращающееся магнитное поле, изменяющееся во времени на 120˚ друг от друга. Но в случае однофазного асинхронного двигателя индуцируется пульсирующее магнитное поле. И в этом случае начальный крутящий момент (пусковой момент) не создается. В однофазном асинхронном двигателе дополнительная обмотка используется для создания фазового сдвига. Вместо пусковой обмотки также используется конденсатор или дроссель для создания смещения фаз.
По аналогии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвигать одну обмотку с помощью конденсатора или катушки индуктивности. После запуска трехфазного асинхронного двигателя от однофазной сети он постоянно работает с пониженной мощностью. Полезная мощность или КПД двигателя снижается на 2/3 rd его номинальной мощности.
Этот метод также известен как метод статического преобразователя фазы. или метод фазового сдвига или метод перемотки назад .
В некоторых схемах используются два конденсатора; один для запуска, второй для работы. Емкость пускового конденсатора в 4-5 раз выше по сравнению с рабочим конденсатором. Принципиальная схема такого устройства показана на рисунке ниже.
Пусковой конденсатор используется только для запуска. Он отключится от цепи после запуска. Рабочий конденсатор всегда остается в цепи. Здесь, как показано на рисунке, двигатель соединен звездой. И оба конденсатора подключены между двумя фазами обмотки.
Однофазное питание имеет две клеммы. Одна клемма соединена с последовательной комбинацией обмотки, а вторая клемма соединена с оставшейся клеммой трехфазной обмотки. Иногда используется только один конденсатор. Этот тип расположения показан на рисунке ниже.
В большинстве случаев небольшие асинхронные двигатели соединяются звездой. Здесь мы взяли трехфазный асинхронный двигатель, соединенный звездой. Для повышения уровня напряжения используется автотрансформатор. Потому что уровень напряжения трехфазного питания составляет 400-440 В, а уровень напряжения однофазного питания составляет 200-230 В для 50 Гц питания.
Эту схему можно использовать без автотрансформатора. В этом случае уровень напряжения остается на уровне однофазного питания (200-230 В). В этом состоянии двигатель также будет работать. Но поскольку напряжение низкое, крутящий момент, создаваемый двигателем, низкий. Эту проблему можно решить, подключив дополнительный пусковой конденсатор (рис. 1). Этот конденсатор известен как пусковой конденсатор или конденсатор фазовой синхронизации.
Если вам нужно изменить направление вращения двигателя, измените схему подключения, как показано на рисунке ниже.
Ограничения:
Ограничения метода статического конденсатора перечислены ниже.
- Выходная мощность трехфазного асинхронного двигателя снижена на 2/3 rd полной мощности нагрузки.
- Этот метод можно использовать для временных целей. Он не подходит для непрерывно работающих приложений.
- В этом методе эффект загрузки постоянно состоит из двух фаз. Это сократит срок службы двигателя.
Использование VFD
ЧРП означает преобразователь частоты. . Это устройство, которое используется для управления двигателем (регулируемая скорость при работе). ЧРП регулирует входной ток двигателя в соответствии с потребностью (нагрузкой). Это устройство позволяет двигателю эффективно работать при различных условиях нагрузки.
Этот метод лучше всего подходит для работы трехфазного асинхронного двигателя с однофазным питанием. В этом случае доступное однофазное питание подается на вход частотно-регулируемого привода. VFD преобразует однофазное питание в постоянный ток путем выпрямления. Опять же, он преобразует источник постоянного тока в трехфазный источник переменного тока. А частота трехфазного выхода регулируется частотно-регулируемым приводом.
Следовательно, доступная мощность (однофазная) подается на ЧРП, а выходная мощность (трехфазная) ЧРП используется в качестве входа трехфазного двигателя. Это также устраняет бросок тока во время запуска двигателя. Он также обеспечивает плавный пуск двигателя от состояния покоя до полной скорости. Существуют различные типы и характеристики ЧРП для различных применений и двигателей. Вам нужно только выбрать правильный VFD для ваших приложений.
ЧРП стоит больше, чем статический конденсатор. Но это дает лучшую производительность двигателя. Стоимость частотно-регулируемого привода меньше, чем у преобразователя с вращающейся фазой. Таким образом, в большинстве приложений частотно-регулируемый привод используется вместо вращающихся преобразователей фазы.
Преимущества VFD:
Преимущества использования частотно-регулируемого привода для работы трехфазного асинхронного двигателя от однофазного источника питания.
- Настроив параметр частотно-регулируемого привода, мы можем добиться плавного пуска двигателя.
- Легко работать с максимальной производительностью и большей эффективностью.
- Он имеет функцию самодиагностики, которая используется для защиты двигателя от перенапряжения, перегрузки, перегрева и т. д.
- Он запрограммирован на автоматическое управление двигателем.
Использование вращательного фазового преобразователя
Другой используемый метод заключается в запуске трехфазного асинхронного двигателя от однофазного источника питания с помощью вращающегося фазового преобразователя (RPC). Этот процесс очень дорогой. Это даст наилучшую производительность по сравнению со всеми другими методами. Потому что поворотный фазовращатель выдает на выходе идеальный трехфазный сигнал. Кроме того, он не используется широко, так как стоимость вращающегося преобразователя очень высока.
Схема подключения поворотного фазопреобразователя показана на рисунке ниже.
Промышленные технологии
- Цепи источника питания
- Однофазные асинхронные двигатели
- Как повысить устойчивость в цепочке поставок
- Как ускорить оцифровку цепочки поставок?
- Как беспроводная энергия меняет производство
- Как ИИ трансформирует глобальные цепочки поставок
- Как квантовые вычисления повлияют на будущее логистики
- Как организационная устойчивость помогает цепочкам поставок
- Отказ источника питания и как защитить свой
- Как получить ремонт блока питания Lambda V404P4K