Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Закон Ома (снова!)

Распространенная фраза, которую можно услышать в отношении электробезопасности, звучит примерно так:« Убивает не напряжение, а текущий ! Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица. Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ОПАСНО - ВЫСОКОЕ НАПРЯЖЕНИЕ!

Принцип «текущее убивает» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе:должно быть доступное напряжение, чтобы побудить ток протекать через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток для заданных напряжения и сопротивления, мы получим следующее уравнение:

Сила тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками. Очевидно, что чем больше напряжения доступно для протекания тока, тем легче он будет проходить через любое заданное сопротивление.

Следовательно, существует опасность высокого напряжения, которое может генерировать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, меньший ток будет протекать при любом заданном напряжении. Насколько опасно напряжение, зависит от общего сопротивления цепи, препятствующего прохождению электрического тока.

Сопротивление тела не является фиксированной величиной. Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног.

Разный процент жира в организме обеспечивает разное сопротивление:одна переменная, влияющая на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

Сопротивление тела также варьируется в зависимости от того, как происходит контакт с кожей:от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д. Пот, богатый солью и минералами, является отличным проводником электричества, будучи жидкостью. То же самое и в крови с таким же высоким содержанием проводящих химикатов.

Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным измерителем, я измеряю примерно 1 миллион Ом (1 МОм) на руках, держась за металлические щупы измерителя между пальцами. Измеритель показывает меньшее сопротивление, когда я крепко сжимаю щупы, и большее сопротивление, когда я держу их слабо.

Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертоносному току и большую опасность поражения электрическим током.

Насколько опасен электрический ток?

Ответ на этот вопрос также зависит от нескольких факторов. Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току и испытывают непроизвольное сокращение мышц из-за разряда статического электричества.

Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, см. В конце главы информацию об источнике этих данных).

Все значения тока даны в миллиамперах (миллиампер равен 1/1000 ампер):

Таблица воздействия электричества на организм

«Гц» обозначает единицу измерения герц . . Это мера того, насколько быстро меняется переменный ток, иначе известный как частота . . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который изменяется с частотой 60 циклов (1 цикл =период времени, когда ток течет в одном направлении, а затем в другом) в секунду.

Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному. Было высказано предположение, что поперечный ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны.

О, и если вам интересно, я понятия не имею, почему женщины более восприимчивы к электрическому току, чем мужчины! Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду). Какое напряжение потребуется на этой чистой сухой коже, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома, чтобы определить это:

E =IR E =(20 мА) (1 МОм) E =20 000 вольт или 20 кВ

Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности и что это значение напряжения представляет собой величину, необходимую для индукции столбняка. Чтобы вызвать болезненный шок, потребуется гораздо меньше! Также имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными оценками .

Обрызгав пальцы водой, чтобы имитировать пот, я смог измерить сопротивление рук в руках всего 17000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 миллиампер, мы получим эту цифру:

E =IR E =(20 мА) (17 кОм) E =340 вольт

В этом реалистичном состоянии потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер. Тем не менее, все же возможно получить смертельный удар от меньшего напряжения, чем это. Обеспечивает гораздо более низкую цифру сопротивления тела, увеличенную за счет контакта с кольцом (золотая полоса, обернутая по окружности пальца, делает отличным точка контакта для поражения электрическим током) или полный контакт с большим металлическим предметом, таким как труба или металлическая ручка инструмента, сопротивление тела может упасть до 1000 Ом (1 кОм), позволяя даже более низкому напряжению представлять потенциал опасность.

E =IR E =(20 мА) (1 кОм) E =20 вольт

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы вызвать через человека ток в 20 миллиампер; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

E =IR E =(17 мА) (1 кОм) E =17 вольт

Для электрических систем семнадцать вольт - это не так уж и много. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом). Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта.

То, что начинается как легкий шок - ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

Исследования предоставили приблизительный набор цифр для электрического сопротивления точек контакта человека в различных условиях (информацию об источнике этих данных см. В конце главы):

Обратите внимание на значения сопротивления для двух условий с 1,5-дюймовой металлической трубой. Сопротивление, измеренное, когда две руки держат трубу, составляет ровно половину сопротивления, когда одна рука держит трубу.

Двумя руками площадь соприкосновения с телом вдвое больше, чем с одной рукой. Это важный урок:электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Держа трубу двумя руками, ток будет параллельным маршруты, по которым течет от трубы к телу (или наоборот).

Как мы увидим в следующей главе, параллельно Цепные пути всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. Тем не менее, при работе с электричеством рекомендуется держать руки чистыми и сухими и снимать все металлические украшения.

Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи. Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может привести к рывку и случайному контакту с более высоким напряжением или какой-либо другой опасностью. Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем.

На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило ощутить удар электрическим током всего 12 вольт.

К счастью, ничего страшного не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не в ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (создавая большой ток через гаечный ключ с большим количеством искр).

Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела, чтобы получить травму.

Путь тока через человеческое тело имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными. Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и смертельного исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, это всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно.

При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам:большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя ту руку, с которой ему меньше всего комфортно, даже если электрический ток, протекающий через эту руку, может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением - это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Сила тока в цепи - это функция доступного напряжения, деленная на общее . сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены так, что ток течет только по одному пути:

Теперь мы увидим эквивалентную схему для человека в изолированных перчатках и ботинках:

Поскольку электрический ток должен проходить через загрузочные и тело и перчатку, чтобы завершить ее кругооборот обратно к батарее, общая сумма ( сумма ) этих сопротивлений препятствует прохождению тока в большей степени, чем любое из сопротивлений, рассматриваемых по отдельности.

Безопасность - одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией:чтобы значительно увеличить сопротивление между проводником и тем, кто или что-либо может с ним контактировать.

К сожалению, было бы непомерно дорого изолировать проводники линии электропередач с недостаточной изоляцией для обеспечения безопасности в случае случайного контакта. Поэтому безопасность обеспечивается за счет того, что эти линии должны находиться достаточно далеко от досягаемости, чтобы никто не мог случайно их коснуться.

ОБЗОР:

Обязательно ознакомьтесь с нашим калькулятором закона Ома .

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:


Промышленные технологии

  1. Закон Ома
  2. Нелинейное сопротивление
  3. Текущий разделитель
  4. 4-проводное измерение сопротивления
  5. Причуды BJT
  6. IGBT
  7. Резисторы
  8. Поведение
  9. Текущие сигнальные системы
  10. Конструкция батареи