Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Резисторы

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько регулярное, мы можем надежно контролировать любую переменную в цепи, просто управляя двумя другими. Возможно, самой простой переменной в любой цепи для управления является ее сопротивление. Это можно сделать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, созданы специально для создания точного количества сопротивления для вставки в цепь. Обычно они изготавливаются из металлической проволоки или углерода и рассчитаны на поддержание стабильного значения сопротивления в широком диапазоне условий окружающей среды.

В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку электрическая энергия рассеивается ими в рабочем контуре. Однако обычно резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и значения на схеме резистора

Наиболее распространенным схематическим обозначением резистора является зигзагообразная линия:

Значения резисторов в омах обычно отображаются как смежные числа, и если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, например R 1 , R 2 , R 3 и т. д. Как видите, символы резисторов могут отображаться как по горизонтали, так и по вертикали:

Настоящие резисторы совсем не похожи на зигзагообразный символ. Вместо этого они выглядят как маленькие трубки или цилиндры с двумя торчащими проводами для подключения к цепи. Вот примеры резисторов разных типов и размеров:

В соответствии с их внешним видом альтернативное схематическое обозначение резистора выглядит как небольшая прямоугольная коробка:

Также можно показать, что резисторы имеют переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного с целью обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто случайно имеет нестабильное сопротивление:

Фактически, каждый раз, когда вы видите символ компонента, нарисованный через диагональную стрелку, этот компонент имеет переменную, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным условием для электронных символов.

Переменные резисторы

Переменные резисторы должны иметь какие-либо физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать, чтобы изменять величину электрического сопротивления. На фотографии показаны некоторые устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию, поскольку электрические токи, проходящие через них, преодолевают «трение» их сопротивления, резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждений. Естественно, эта номинальная мощность указывается в физических единицах измерения «ватты». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше.

Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резистора, как номинальная мощность соотносится с размером:чем больше резистор, тем выше его номинальная рассеиваемая мощность. Также обратите внимание, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое ничего не делает, кроме сопротивления электрическому току, резисторы - чрезвычайно полезные устройства в схемах.

Поскольку они просты и широко используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и батарей.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов посмотрите фотографию ниже. Это изображение печатной платы или печатной платы:сборка, состоящая из прослоенных слоев изоляционной фенольной волокнистой платы и проводящих медных полос, в которые можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой».

Различные компоненты на этой печатной плате обозначены печатными этикетками. Резисторы обозначаются любой этикеткой, начинающейся с буквы «R».

Эта конкретная печатная плата представляет собой компьютерный аксессуар, называемый «модемом», который позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть как минимум дюжину резисторов (все с мощностью рассеиваемой мощности 1/4 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами») также содержит свой собственный массив резисторов для их внутренних функций. Другой пример печатной платы показывает резисторы, упакованные в еще меньшие блоки, называемые «устройствами для поверхностного монтажа».

Эта конкретная печатная плата является нижней стороной жесткого диска персонального компьютера, и снова припаянные к ней резисторы обозначены этикетками, начинающимися с буквы «R»:

На этой печатной плате более сотни резисторов для поверхностного монтажа, и это количество, конечно, не включает количество резисторов, встроенных в черные «микросхемы». Эти две фотографии должны убедить любого, что резисторы - устройства, которые «просто» препятствуют прохождению электрического тока, - очень важные компоненты в области электроники!

«Нагрузка» на схематических диаграммах

На схематических диаграммах символы резисторов иногда используются для иллюстрации любого общего типа устройства в цепи, выполняющего что-то полезное с электрической энергией. Любое неспецифическое электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схематическую диаграмму, показывающую символ резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей некоторые концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ схем резисторов

Чтобы обобщить то, что мы узнали в этом уроке, давайте проанализируем следующую схему, определив все, что мы можем, исходя из предоставленной информации:

Все, что нам здесь дано для начала, - это напряжение батареи (10 вольт) и ток цепи (2 ампера). Нам неизвестно сопротивление резистора в Ом или рассеиваемая им мощность в ваттах. Изучая наш массив уравнений закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных величин напряжения и тока:

Подставляя известные величины напряжения (E) и тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

Для условий цепи 10 В и 2 А сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы указать резистор с минимальной номинальной мощностью 20 Вт, иначе он перегреется и выйдет из строя.

Материалы резисторов

Резисторы могут быть изготовлены из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электриков используют перечисленные ниже типы:

Резисторы с проволочной обмоткой

Резисторы с проволочной обмоткой изготавливаются путем наматывания резистивного провода вокруг непроводящего сердечника по спирали. Обычно они производятся для высокоточных и силовых приложений. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивный провод из никель-хромового сплава не подходит для приложений с частотами выше 50 кГц.

Низкий уровень шума и устойчивость к колебаниям температуры являются стандартными характеристиками проволочных резисторов. Доступны значения сопротивления от 0,1 до 100 кОм с точностью от 0,1% до 20%.

Металлопленочные резисторы

Нитрид нихрома или тантала обычно используют для металлопленочных резисторов. Комбинация керамического материала и металла обычно составляет резистивный материал. Значение сопротивления изменяется путем вырезания спирального рисунка в пленке, как углеродная пленка, с помощью лазера или абразива. Металлопленочные резисторы обычно менее устойчивы к температуре, чем резисторы с проволочной обмоткой, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлических пленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. Из-за этого металлооксидные пленочные резисторы используются в приложениях, требующих высокой прочности.

Резисторы из фольги

Резистор из фольги, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете и используются в приложениях с высокими требованиями к точности. Керамическая подложка, к которой приклеена тонкая объемная металлическая фольга, составляет резистивный элемент. Фольговые резисторы имеют очень низкотемпературный коэффициент сопротивления.

Резисторы из углеродного состава (CCR)

До 1960-х годов резисторы из углеродного состава были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). В качестве резистивного элемента резисторов CCR используется смесь мелких частиц углерода и непроводящего керамического материала.

Вещество формуют в форме цилиндра и запекают. Размеры корпуса и соотношение углерода и керамики определяют величину сопротивления. Использование большего количества углерода в процессе означает меньшее сопротивление. Резисторы CCR по-прежнему полезны для определенных приложений из-за их способности выдерживать импульсы высокой энергии, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Резисторы с углеродной пленкой имеют тонкую углеродную пленку (со спиральным вырезом в пленке для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Это позволяет получить более точное значение сопротивления, а также увеличивает значение сопротивления. Резисторы из углеродной пленки намного точнее, чем резисторы из углеродной композиции. Специальные углеродные пленочные резисторы используются там, где требуется высокая импульсная стабильность.

Ключевые показатели эффективности (КПЭ)

Ключевые показатели эффективности для каждого материала резистора можно найти ниже:

Характеристика Металлическая пленка Толстая металлическая пленка Прецизионная металлическая пленка Углеродный состав Углеродная пленка Темп. диапазон -55 + 125-55 + 130-55 + 155-40 + 105,55 + 155 Макс. темп. коэфф.100100151200250-1000Vmax200-350250200350-500350-500Шум (мкВ на вольт приложенного постоянного тока) 0.50.10.14 (100K) 5 (100K) R Insul.1000010000100001000010000 Припой (изменение% значения сопротивления) 0.20% 0.15% 0.02% 2% 0.50% Влажное тепло (изменение% значения сопротивления) 0,50% 1% 0,50% 15% 3,50% Срок годности (% изменения значения сопротивления) 0,10% 0,10% 0,00% 5% 2% Полный рейтинг (2000 ч при 70 ° C) 1% 1% 0,03 % 10% 4%

ОБЗОР:

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:

Попробуйте наши Калькулятор цветовой маркировки резистора в нашем Инструменты раздел .


Промышленные технологии

  1. Использование омметра
  2. Закон Ома
  3. Нелинейное сопротивление
  4. Коэффициенты удельного сопротивления
  5. Таблица температурных коэффициентов сопротивления
  6. Поведение
  7. Конструкция батареи
  8. Ферро-Титанит® ВФН
  9. Саникро® 35
  10. Точечная сварка сопротивлением все еще актуальна