Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Однофазные системы питания

Принципиальная схема однофазной энергосистемы мало говорит о разводке практической силовой цепи.

На рисунке выше изображена очень простая цепь переменного тока. Если бы рассеиваемая мощность нагрузочного резистора была значительной, мы могли бы назвать это «силовой цепью» или «системой питания», а не рассматривать ее как обычную цепь.

Различие между «силовой цепью» и «обычной цепью» может показаться произвольным, но с практической точки зрения это определенно не так.

Практический анализ схем

Одной из таких проблем является размер и стоимость проводки, необходимой для подачи энергии от источника переменного тока к нагрузке. Обычно мы не особо задумываемся об этом, если просто анализируем цепь ради изучения законов электричества.

Однако в реальном мире это может стать серьезной проблемой. Если мы дадим источнику в приведенной выше схеме значение напряжения, а также дадим значения рассеиваемой мощности для двух нагрузочных резисторов, мы сможем определить потребности в проводке для этой конкретной схемы:

С практической точки зрения, проводка для нагрузок 20 кВт при 120 В перем. тока довольно значительна (167 А).

83,33 ампера для каждого нагрузочного резистора на приведенном выше рисунке в сумме дают 166,66 ампера полного тока цепи. Это немалый ток, и для него потребуются медные проводники сечением не менее 1/0 калибра.

Такая проволока имеет диаметр более 1/4 дюйма (6 мм) и весит более 300 фунтов на тысячу футов. Учтите, что медь тоже не из дешевых! В наших интересах найти способы минимизировать такие затраты, если бы мы проектировали энергосистему с проводами большой длины.

Один из способов сделать это - увеличить напряжение источника питания и использовать нагрузки, рассчитанные на рассеивание 10 кВт каждая при этом более высоком напряжении.

Нагрузки, конечно, должны иметь большее сопротивление, чтобы рассеивать ту же мощность, что и раньше (по 10 кВт каждая), при более высоком напряжении, чем раньше.

Преимущество будет заключаться в меньшем потреблении тока, позволяющем использовать меньший, более легкий и дешевый провод:

Для тех же нагрузок 10 кВт при 240 В пер. тока требуется менее прочная проводка, чем при 120 В пер. тока (83 А).

Теперь наша общая ток в цепи составляет 83,33 ампера, что вдвое меньше, чем было раньше.

Теперь мы можем использовать проволоку калибра 4, которая весит меньше половины того, что проволока калибра 1/0 на единицу длины. Это значительное снижение стоимости системы без снижения производительности.

Вот почему разработчики систем распределения электроэнергии предпочитают передавать электроэнергию с использованием очень высоких напряжений (многие тысячи вольт):чтобы извлечь выгоду из экономии за счет использования меньшего, более легкого и более дешевого провода.

Опасности повышения напряжения источника

Однако это решение не лишено недостатков. Еще одна практическая проблема, связанная с силовыми цепями, - опасность поражения электрическим током от высокого напряжения.

Опять же, обычно это не то, на чем мы концентрируемся при изучении законов электричества, но это очень серьезная проблема в реальном мире, особенно когда имеют дело с большими объемами энергии.

Повышение эффективности, достигаемое за счет увеличения напряжения в цепи, представляет повышенную опасность поражения электрическим током. Электрораспределительные компании решают эту проблему, протягивая свои линии электропередач вдоль высоких опор или башен и изолируя линии от несущих конструкций с помощью больших фарфоровых изоляторов.

В точке использования (потребителя электроэнергии) все еще остается вопрос, какое напряжение использовать для питания нагрузок.

Высокое напряжение повышает эффективность системы за счет снижения тока в проводнике, но не всегда целесообразно держать силовую проводку вне досягаемости в точке использования, как это может быть поднят в распределительных системах.

Этим компромиссом между эффективностью и опасностью разработчики европейских энергосистем решили рискнуть, поскольку все их домашние хозяйства и бытовая техника работают при номинальном напряжении 240 вольт вместо 120 вольт, как в Северной Америке.

Вот почему туристы из Америки, посещающие Европу, должны иметь при себе небольшие понижающие трансформаторы для своих портативных приборов, чтобы понижать мощность 240 В переменного тока (вольт переменного тока) до более подходящих 120 В переменного тока.

Решения для подачи напряжения потребителям

Понижающие трансформаторы в конечной точке энергопотребления

Есть ли способ одновременно реализовать преимущества повышения эффективности и снижения угрозы безопасности?

Одним из решений может быть установка понижающих трансформаторов в конечной точке энергопотребления, как это должен делать американский турист, находясь в Европе.

Однако это было бы дорого и неудобно для чего угодно, кроме очень малых нагрузок (где трансформаторы можно построить дешево) или очень больших нагрузок (когда стоимость толстых медных проводов превысит стоимость трансформатора).

Две последовательные нагрузки более низкого напряжения

Альтернативным решением может быть использование источника более высокого напряжения для подачи питания на две последовательно соединенные нагрузки с более низким напряжением. Этот подход сочетает в себе эффективность высоковольтной системы с безопасностью низковольтной системы:

Последовательно подключенные нагрузки на 120 В перем. тока, питаемые от источника 240 В перем. тока при общем токе 83,3 А.

Обратите внимание на обозначения полярности (+ и -) для каждого показанного напряжения, а также на однонаправленные стрелки для тока.

По большей части я избегал обозначать «полярности» в цепях переменного тока, которые мы анализировали, даже несмотря на то, что обозначения действительны для обеспечения системы отсчета для фазы.

В следующих разделах этой главы фазовые отношения станут очень важными, поэтому я введу эти обозначения в начале главы для вашего ознакомления.

Ток через каждую нагрузку такой же, как и в простой 120-вольтовой цепи, но токи не складываются, потому что нагрузки включены последовательно, а не параллельно.

Напряжение на каждой нагрузке составляет всего 120 вольт, а не 240, поэтому запас прочности выше. Имейте в виду, что у нас все еще есть полные 240 вольт на проводах системы питания, но каждая нагрузка работает при пониженном напряжении.

Если кто-то и собирается быть шокированным, скорее всего, это произойдет из-за контакта с проводниками конкретной нагрузки, а не из-за контакта с основными проводами энергосистемы.

Модификации конструкции с двумя сериями нагрузок

У этой конструкции есть только один недостаток:последствия отказа одной нагрузки разомкнутой или выключенной (при условии, что каждая нагрузка имеет последовательный переключатель включения / выключения для прерывания тока) не благоприятны.

В случае последовательной цепи, если бы одна из нагрузок разомкнулась, ток остановился бы и в другой нагрузке. По этой причине нам нужно немного изменить дизайн:(рисунок ниже)

Добавление нейтрального проводника позволяет управлять нагрузками индивидуально.

Двухфазная система питания

Вместо одного 240-вольтного источника питания мы используем два 120-вольтовых источника (в фазе друг с другом!), Последовательно для получения 240 вольт, а затем подводим третий провод к точке соединения между нагрузками, чтобы справиться с возможностью одной нагрузки. открытие.

Это называется разделенной фазой . система питания. Три провода меньшего размера по-прежнему дешевле, чем два провода, необходимые для простой параллельной конструкции, поэтому мы по-прежнему впереди по эффективности.

Проницательный наблюдатель заметит, что нейтральный провод должен выдерживать только разность тока между двумя нагрузками обратно к источнику.

В приведенном выше случае при идеально «сбалансированных» нагрузках, потребляющих одинаковое количество энергии, нейтральный провод пропускает нулевой ток.

Обратите внимание на то, как нейтральный провод подключен к заземлению со стороны источника питания. Это обычная особенность энергосистем, содержащих «нейтральный» провод, поскольку заземление нейтрального провода обеспечивает минимально возможное напряжение в любой момент времени между любым «горячим» проводом и заземлением.

Важным компонентом системы с расщепленной фазой является двойной источник переменного напряжения. К счастью, спроектировать и построить его нетрудно.

Поскольку большинство систем переменного тока в любом случае получают питание от понижающего трансформатора (понижая напряжение с высоких уровней распределения до напряжения пользовательского уровня, например 120 или 240), этот трансформатор может быть построен с вторичной обмоткой с центральным отводом:

Американское питание 120/240 В переменного тока поступает от сетевого трансформатора с центральным ответвлением.

Если питание переменного тока поступает непосредственно от генератора (генератора переменного тока), катушки могут быть аналогичным образом с центральным отводом для того же эффекта. Дополнительные расходы на подключение центрального отвода к обмотке трансформатора или генератора минимальны.

Здесь действительно важны обозначения полярности (+) и (-). Это обозначение часто используется для обозначения фазировки множественных Источники переменного напряжения, поэтому ясно, помогают ли они («повышают») друг друга или противостоят («противодействуют») друг другу.

Если бы не эта маркировка полярности, фазовые отношения между несколькими источниками переменного тока могли бы быть очень запутанными. Обратите внимание, что источники с разделенной фазой на схеме (каждый 120 вольт ∠ 0 °) с отметками полярности (+) - (-), как и батареи с последовательным подключением, в качестве альтернативы могут быть представлены как таковые:(Рисунок ниже)

Источник с разделением фаз на 120/240 В переменного тока эквивалентен двум последовательным соединениям с источниками на 120 В переменного тока.

Чтобы математически рассчитать напряжение между «горячими» проводами, мы должны вычесть напряжения, поскольку отметки их полярности показывают, что они противоположны друг другу:

Если мы отметим общую точку подключения двух источников (нейтральный провод) одинаковым знаком полярности (-), мы должны выразить их относительный фазовый сдвиг как 180 °. В противном случае мы бы обозначили два источника напряжения, прямо противоположных друг другу, что давало бы 0 вольт между двумя «горячими» проводниками.

Почему я трачу время на уточнение отметок полярности и фазовых углов? В следующем разделе будет больше смысла!

Системы электропитания в американских домах и легкой промышленности чаще всего бывают расщепленными, обеспечивая так называемое питание 120/240 В переменного тока. Термин «разделенная фаза» просто относится к источнику питания с разделенным напряжением в такой системе.

В более общем смысле такой источник питания переменного тока называется однофазным . потому что оба сигнала напряжения синфазны или синхронизированы друг с другом.

Термин «однофазный» является противопоставлением другому типу энергосистемы, называемому «многофазным», который мы собираемся подробно изучить. Приносим извинения за длинное введение, приведшее к заглавной теме этой главы.

Преимущества многофазных систем питания становятся более очевидными, если сначала хорошо разбираться в однофазных системах.

ОБЗОР:

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:


Промышленные технологии

  1. Схема с переключателем
  2. Введение в схемы переменного тока
  3. Схема выпрямителя / фильтра
  4. Уравнения цепи переменного тока
  5. Вероятные сбои в проверенных системах
  6. Источники энергии
  7. Схема выключения Raspberry Pi в спящем режиме
  8. Недорогая пассивная система охлаждения, не требующая энергии
  9. Схема двойного источника питания — от 230 В переменного тока до ±12 В постоянного тока
  10. Усовершенствованные системы контроля и защиты электрических цепей