Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Цепи конденсатора переменного тока

Конденсаторы против. Резисторы

Конденсаторы не ведут себя так же, как резисторы. В то время как резисторы пропускают через себя поток электронов, прямо пропорциональный падению напряжения, конденсаторы препятствуют изменениям . по напряжению, потребляя или подавая ток во время зарядки или разрядки до нового уровня напряжения.

Поток электронов «через» конденсатор прямо пропорционален скорости изменения . напряжения на конденсаторе. Противодействие изменению напряжения - еще одна форма реактивного сопротивления . , но тот, который прямо противоположен тому, что демонстрируют индукторы.

Характеристики цепи конденсатора

Выражаясь математически, соотношение между током, протекающим через конденсатор, и скоростью изменения напряжения на конденсаторе выглядит следующим образом:

Выражение de / dt - это единица из расчетов, означающая скорость изменения мгновенного напряжения (e) во времени в вольтах в секунду. Емкость (C) выражается в фарадах, а мгновенный ток (i), разумеется, выражается в амперах.

Иногда скорость мгновенного изменения напряжения с течением времени выражается как dv / dt вместо de / dt:вместо напряжения используется строчная буква «v» или «e», но это означает то же самое. Чтобы показать, что происходит с переменным током, давайте проанализируем простую схему конденсатора:

Чистая емкостная цепь:напряжение конденсатора отстает от тока конденсатора на 90 °

Если бы мы изобразили ток и напряжение для этой очень простой схемы, это выглядело бы примерно так:

Формы сигналов чисто емкостной цепи.

Помните, что ток через конденсатор - это реакция на изменение по напряжению на нем.

Следовательно, мгновенный ток равен нулю всякий раз, когда мгновенное напряжение находится на пике (нулевое изменение или наклон уровня на синусоидальной волне напряжения), а мгновенный ток находится на пике везде, где мгновенное напряжение имеет максимальное изменение (точки самый крутой наклон на волне напряжения, где она пересекает нулевую линию).

Это приводит к появлению волны напряжения, которая на -90 ° не совпадает по фазе с волной тока. Глядя на график, кажется, что волна тока имеет «фору» по сравнению с волной напряжения; ток «опережает» напряжение, а напряжение «отстает» от тока.

Напряжение отстает от тока на 90 ° в чисто емкостной цепи.

Как вы, возможно, догадались, та же необычная волна мощности, которую мы видели в простой цепи индуктивности, присутствует и в простой цепи конденсатора:

В чисто емкостной цепи мгновенная мощность может быть положительной или отрицательной.

Как и в случае с простой схемой индуктивности, фазовый сдвиг на 90 градусов между напряжением и током приводит к появлению волны мощности, которая в равной степени чередуется между положительным и отрицательным. Это означает, что конденсатор не рассеивает мощность, поскольку он реагирует на изменения напряжения; он просто поочередно поглощает и высвобождает энергию.

Реактивное сопротивление конденсатора

Противодействие конденсатора изменению напряжения означает сопротивление переменному напряжению в целом, которое по определению всегда изменяется по мгновенной величине и направлению.

Для любой заданной величины переменного напряжения и заданной частоты конденсатор заданного размера будет «проводить» определенную величину переменного тока.

Точно так же, как ток через резистор является функцией напряжения на резисторе и сопротивления, предлагаемого резистором, переменный ток через конденсатор является функцией переменного напряжения на нем и реактивного сопротивления предлагается конденсатор.

Как и в случае катушек индуктивности, реактивное сопротивление конденсатора выражается в омах и обозначается буквой X (или, если точнее, XC).

Поскольку конденсаторы «проводят» ток пропорционально скорости изменения напряжения, они будут пропускать больше тока при более быстром изменении напряжения (поскольку они заряжаются и разряжаются до тех же пиков напряжения за меньшее время) и меньший ток при более медленном изменении напряжения.

Это означает, что реактивное сопротивление в Ом для любого конденсатора обратно пропорционально частоте переменного тока.

Реактивное сопротивление конденсатора 100 мкФ:

Частота (Герцы) Реактивное сопротивление (Ом) 6026.525812013.262925000.6366

Обратите внимание, что отношение емкостного реактивного сопротивления к частоте прямо противоположно отношению индуктивного реактивного сопротивления.

Емкостное реактивное сопротивление (в омах) уменьшается с увеличением частоты переменного тока. И наоборот, индуктивное реактивное сопротивление (в омах) увеличивается с увеличением частоты переменного тока. Катушки индуктивности противодействуют более быстрому изменению токов, создавая большие падения напряжения; Конденсаторы противодействуют более быстрому изменению падений напряжения, обеспечивая большие токи.

Как и в случае с индукторами, член 2πf в уравнении реактивного сопротивления может быть заменен строчной греческой буквой Омега (ω), которая называется угловой скоростью . цепи переменного тока. Таким образом, уравнение XC =1 / (2πfC) также может быть записано как XC =1 / (ωC), где ω приводится в единицах радиан в секунду . .

Переменный ток в простой емкостной цепи равен напряжению (в вольтах), деленному на емкостное реактивное сопротивление (в омах), точно так же, как переменный или постоянный ток в простой резистивной цепи равен напряжению (в вольтах), деленному на сопротивление (в Ом). Следующая схема иллюстрирует это математическое соотношение на примере:

Емкостное реактивное сопротивление.

Однако нужно иметь в виду, что здесь напряжение и ток не совпадают по фазе. Как было показано ранее, ток имеет фазовый сдвиг + 90 ° по отношению к напряжению. Если мы представим эти углы фаз напряжения и тока математически, мы сможем вычислить фазовый угол реактивного сопротивления конденсатора току.

Напряжение в конденсаторе отстает от тока на 90 °.

Математически мы говорим, что фазовый угол сопротивления конденсатора току составляет -90 °, что означает, что сопротивление конденсатора току является отрицательной мнимой величиной. (См. Рисунок выше.) Этот фазовый угол реактивного противодействия току становится критически важным при анализе цепей, особенно для сложных цепей переменного тока, где реактивное сопротивление и сопротивление взаимодействуют.

Будет полезно представлять любой сопротивление компонента току в терминах комплексных чисел, а не только скалярных величин сопротивления и реактивного сопротивления.

ОБЗОР:

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:


Промышленные технологии

  1. Чувствительный детектор напряжения
  2. Аудио-осциллятор 555
  3. Генератор изменения скорости 555
  4. Цепи коммутации индуктора
  5. Преобразование сигнала напряжения в ток
  6. Averager and Summer Circuits
  7. Цепи источника питания
  8. Электроэнергия в электрических цепях
  9. Напряжение пробоя изолятора
  10. Цепи индуктивности переменного тока