Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Industrial Internet of Things >> Датчик

Основы и приложения оптического датчика

Оптический датчик преобразует световые лучи в электронный сигнал. Назначение оптического датчика - измерить физическое количество света и, в зависимости от типа датчика, затем преобразовать его в форму, которая может считываться встроенным измерительным устройством. Оптические датчики используются для бесконтактного обнаружения, подсчета или позиционирования деталей. Оптические датчики могут быть как внутренними, так и внешними. Внешние датчики собирают и передают необходимое количество света, в то время как внутренние датчики чаще всего используются для измерения изгибов и других небольших изменений направления.


Различные оптические датчики могут измерять следующие величины:температура, скорость, уровень жидкости, давление, смещение. (положение), вибрации, химические вещества, силовое излучение, значение pH, деформация, акустическое поле и электрическое поле

Типы оптических датчиков

Существуют различные типы оптических датчиков, наиболее распространенные типы, которые мы использовали в наших реальных приложениях, как указано ниже.

Фототранзисторы - это тип биполярных транзисторов, в которых переход база-коллектор подвергается воздействию света. Это приводит к тому же поведению фотодиода, но с внутренним усилением.

Принцип работы заключается в передаче и приеме света оптическим датчиком, обнаруживаемый объект отражает или прерывает световой луч, излучаемый излучающим диодом . В зависимости от типа устройства оценивается прерывание или отражение светового луча. Это позволяет обнаруживать объекты независимо от материала, из которого они сделаны (дерево, металл, пластик или другой). Специальные устройства даже позволяют обнаруживать прозрачные объекты, объекты разного цвета или контрастности. Различные типы оптических датчиков описаны ниже.

Различные типы оптических датчиков

Датчики сквозного луча

Система состоит из двух отдельных компонентов:передатчик и приемник расположены напротив друг друга. Передатчик проецирует световой луч на приемник. Прерывание светового луча интерпретируется приемником как сигнал переключения. Неважно, где происходит прерывание.

Преимущество: Могут быть достигнуты большие рабочие расстояния, и распознавание не зависит от структуры поверхности объекта, цвета или отражательной способности.

Чтобы гарантировать высокую эксплуатационную надежность, необходимо убедиться, что объект достаточно большой, чтобы полностью прервать световой луч.

Датчики световозвращения

Передатчик и приемник находятся в одном доме, через отражатель излучаемый световой луч направляется обратно к приемнику. Прерывание светового луча инициирует операцию переключения. Неважно, где происходит прерывание.

Преимущество: Датчики с отражением от рефлектора позволяют работать на больших расстояниях с точками переключения, которые точно воспроизводятся и требуют небольших усилий для монтажа. Все объекты, прерывающие световой луч, точно обнаруживаются независимо от структуры или цвета их поверхности.

Датчики диффузного отражения

Передатчик и приемник находятся в одном корпусе. Проходящий свет отражается обнаруживаемым объектом.

Преимущество: Интенсивность рассеянного света на приемнике служит условием переключения. Независимо от настройки чувствительности задняя часть всегда отражает лучше, чем передняя. Это приводит к ошибочным операциям переключения.


Различные источники света для оптических датчиков

Есть много типов источников света. Солнце и свет от горящих факелов были первыми источниками света, использованными для изучения оптики. Фактически, свет, исходящий от определенного (возбужденного) вещества (например, ионов йода, хлора и ртути), по-прежнему является опорными точками в оптическом спектре. Одним из ключевых компонентов оптической связи является источник монохроматического света. В оптической связи источники света должны быть монохромными, компактными и долговечными. Вот два разных типа источников света.

1. Светодиод (светоизлучающий диод)

В процессе рекомбинации электронов с дырками на стыках n-легированных и p-легированных полупроводников энергия выделяется в виде света. Возбуждение происходит путем приложения внешнего напряжения, и может происходить рекомбинация, или она может быть стимулирована как другой фотон. Это облегчает соединение светодиодной лампы с оптическим устройством.

Светодиод это полупроводниковый pn-элемент, который излучает свет, когда на его два контакта подается напряжение

2. ЛАЗЕР (усиление света вынужденным излучением)

Лазер создается, когда электроны в атомах в специальных очках, кристаллах или газах поглощают энергию электрического тока, и они возбуждаются. Возбужденные электроны перемещаются с орбиты с более низкой энергией на орбиту с более высокой энергией вокруг ядра атома. Когда они возвращаются в свое нормальное или основное состояние, это приводит к тому, что электроны испускают фотоны (частицы света). Все эти фотоны имеют одинаковую длину волны и когерентны. Обычный видимый свет состоит из нескольких длин волн и не является когерентным.

LASAR Light Процесс эмиссии

Применение оптических датчиков

Применение этих оптических датчиков варьируется от компьютеров до датчиков движения. Чтобы оптические датчики работали эффективно, они должны быть подходящего типа для применения, чтобы сохранять чувствительность к измеряемым свойствам. Оптические датчики являются неотъемлемой частью многих распространенных устройств, включая компьютеры, копировальные аппараты (ксерокопии) и осветительные приборы, которые автоматически включаются в темноте. А некоторые из распространенных приложений включают системы сигнализации, синхронизаторы для фотографических вспышек и системы, которые могут обнаруживать присутствие объектов.

Датчики окружающего света

в основном мы видели этот датчик на наших мобильных телефонах. Это продлит срок службы батареи и обеспечит удобство просмотра дисплеев, оптимизированных для окружающей среды.

Окружающий свет Датчики

Биомедицинские приложения

оптические датчики широко применяются в биомедицине. Некоторые из примеров:Анализ дыхания с использованием перестраиваемого диодного лазера. Оптический монитор сердечного ритма. Оптический монитор сердечного ритма измеряет вашу частоту сердечных сокращений с помощью света. Светодиод светит сквозь кожу, а оптический датчик исследует отраженный свет. Поскольку кровь поглощает больше света, колебания уровня освещенности можно преобразовать в частоту сердечных сокращений. Этот процесс называется фотоплетизмографией.

Индикатор уровня жидкости на основе оптического датчика

Индикатор уровня жидкости на основе оптического датчика состоит из двух основных частей:инфракрасного светодиода, соединенного с световым транзистором, и прозрачного наконечника призмы на передней панели. Светодиод излучает инфракрасный свет наружу, когда наконечник датчика окружен воздухом, свет реагирует, отражаясь назад внутрь наконечника, прежде чем вернуться к транзистору. Когда датчик погружается в жидкость, свет рассеивается по всей поверхности и меньше возвращается к транзистору. Количество отраженного на транзисторе света влияет на выходные уровни, что делает возможным определение точечного уровня

Оптический уровень Датчик

У вас есть основная информация об оптическом датчике? Мы подтверждаем, что приведенная выше информация разъясняет основы концепции оптического датчика со связанными изображениями и различными приложениями реального времени. Кроме того, любые сомнения относительно этой концепции или реализации каких-либо проектов на основе датчиков, пожалуйста, дайте свои предложения и комментарии к этой статье, которые вы можете написать в разделе комментариев ниже. Вот вам вопрос, какие источники света используются в оптическом датчике?


Датчик

  1. Работа виртуального датчика и его приложения
  2. Датчик артериального давления - работа и его приложения
  3. Работа датчика напряжения и его применение
  4. Датчик RVG - принцип работы и его приложения
  5. Лямбда-датчик - работа и его применение
  6. Работа датчика занятости и его приложения
  7. Работа дверного датчика и его применение
  8. Работа индуктивного датчика и приложения
  9. Работа датчика изображения и его приложения
  10. Датчик цвета - работа и приложения