Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Синхронные двигатели

Однофазные синхронные двигатели

Однофазные синхронные двигатели доступны в небольших размерах для приложений, требующих точного времени, таких как хронометраж, (часы) и магнитофоны. Хотя кварцевые часы с батарейным питанием широко доступны, часы с питанием от сети переменного тока имеют лучшую долгосрочную точность - в течение нескольких месяцев.

Это связано с тем, что операторы электростанции намеренно поддерживают долгосрочную точность частоты системы распределения переменного тока. Если он отстает на несколько циклов, они восполнят потерянные циклы переменного тока, так что часы не теряют время.

Большие и малые синхронные двигатели

Выше 10 лошадиных сил (10 кВт) более высокий КПД и ведущий коэффициент мощности делают большие синхронные двигатели полезными в промышленности. Большие синхронные двигатели на несколько процентов более эффективны, чем более распространенные асинхронные двигатели, хотя синхронный двигатель более сложен.

Поскольку двигатели и генераторы похожи по конструкции, должна быть возможность использовать генератор в качестве двигателя и, наоборот, использовать двигатель в качестве генератора.

Асинхронный двигатель похож на генератор переменного тока с вращающимся полем. На рисунке ниже показаны небольшие генераторы переменного тока с вращающимся полем постоянного магнита. На рисунке ниже могут быть изображены либо два параллельно подключенных и синхронизированных генератора переменного тока, приводимых в действие механическими источниками энергии, либо генератор переменного тока, приводящий в действие синхронный двигатель. Или это могут быть два двигателя, если подключен внешний источник питания.

Дело в том, что в любом случае роторы должны работать с одинаковой номинальной частотой и находиться в фазе друг с другом. То есть они должны быть синхронизированы . . Процедура синхронизации двух генераторов переменного тока заключается в следующем:(1) размыкание переключателя, (2) приведение в действие обоих генераторов с одинаковой скоростью вращения, (3) ускорение или замедление фазы одного блока до тех пор, пока оба выхода переменного тока не будут в фазе, (4) замыкание переключатель до того, как они сойдут по фазе.

После синхронизации генераторы переменного тока будут заблокированы друг с другом, что потребует значительного крутящего момента, чтобы отделить один блок (не синхронизированный) от другого.

Синхронный двигатель, работающий синхронно с генератором

Учет крутящего момента синхронных двигателей

Если больший крутящий момент в направлении вращения приложен к ротору одного из вышеупомянутых вращающихся генераторов переменного тока, угол ротора будет увеличиваться (противоположно (3)) по отношению к магнитному полю в катушках статора, пока все еще синхронизированы, и ротор подает энергию в сеть переменного тока, как генератор переменного тока.

Ротор также будет выдвинут относительно ротора другого генератора. Если нагрузка, такая как тормоз, приложена к одному из вышеуказанных устройств, угол ротора будет отставать от поля статора, как в (3), извлекая энергию из линии переменного тока, как двигатель.

Если приложен чрезмерный крутящий момент или сопротивление, ротор превысит максимальный угол крутящего момента опережение или отставание настолько сильно, что синхронизация теряется. Крутящий момент развивается только при сохранении синхронизации двигателя.

Повышение скорости синхронных двигателей

В случае использования небольшого синхронного двигателя вместо генератора переменного тока нет необходимости выполнять сложную процедуру синхронизации для генераторов переменного тока. Однако синхронный двигатель не запускается автоматически и должен быть доведен до приблизительной электрической скорости генератора переменного тока, прежде чем он синхронизируется с частотой вращения генератора.

После набора скорости синхронный двигатель будет поддерживать синхронизм с источником питания переменного тока и развивать крутящий момент.

Синусоидальная волна приводит в движение синхронный двигатель

Предполагая, что двигатель достигает синхронной скорости, когда синусоидальная волна меняется на положительную на рисунке выше (1), нижняя северная катушка толкает северный полюс ротора, в то время как верхняя южная катушка притягивает северный полюс ротора. Аналогичным образом южный полюс ротора отталкивается верхней южной катушкой и притягивается к нижней северной катушке.

К тому времени, когда синусоида достигает пика в точке (2), крутящий момент, удерживающий северный полюс ротора вверх, становится максимальным. Этот крутящий момент уменьшается по мере уменьшения синусоидальной волны до 0 В постоянного тока в точке (3) с минимальным крутящим моментом.

Поскольку синусоидальная волна меняется на отрицательную между (3 и 4), нижняя южная катушка толкает южный полюс ротора, притягивая северный полюс ротора. Подобным образом северный полюс ротора отталкивается верхней северной катушкой и притягивается к нижней южной катушке. В точке (4) синусоида достигает отрицательного пика с удерживающим моментом снова на максимуме. По мере того как синусоидальная волна изменяется с отрицательной на 0 В постоянного тока на положительную, процесс повторяется для нового цикла синусоидальной волны.

Обратите внимание, что на приведенном выше рисунке показано положение ротора на холостом ходу (α =0 °). На практике нагрузка на ротор приведет к тому, что ротор будет отставать от положений, показанных углом α. Этот угол увеличивается с нагрузкой до тех пор, пока максимальный крутящий момент двигателя не будет достигнут при α =90 °.

За пределами этого угла теряются синхронизация и крутящий момент. Ток в катушках однофазного синхронного двигателя пульсирует с переменной полярностью.

Если скорость ротора постоянного магнита близка к частоте этого чередования, он синхронизируется с этим чередованием. Поскольку поле катушки пульсирует и не вращается, необходимо увеличить скорость ротора с постоянными магнитами с помощью вспомогательного двигателя. Это небольшой асинхронный двигатель, похожий на те, что описаны в следующем разделе.

Добавление полюсов снижает скорость

2-полюсный (пара полюсов N-S) генератор будет генерировать синусоидальную волну 60 Гц при вращении со скоростью 3600 об / мин (оборотов в минуту). 3600 об / мин соответствует 60 оборотам в секунду. Аналогичный двухполюсный синхронный двигатель с постоянными магнитами также будет вращаться со скоростью 3600 об / мин.

Двигатель с меньшей скоростью может быть сконструирован путем добавления большего количества пар полюсов. 4-полюсный двигатель будет вращаться со скоростью 1800 об / мин, 12-полюсный двигатель - со скоростью 600 об / мин. Показанный стиль конструкции (рисунок выше) предназначен для иллюстрации. Многополюсные синхронные двигатели со статором с более высоким КПД и большим крутящим моментом фактически имеют несколько полюсов в роторе.

12-полюсный синхронный двигатель с одной обмоткой

Вместо того, чтобы наматывать 12 катушек для 12-полюсного двигателя, намотайте одну катушку с двенадцатью соединенными штырями стальными полюсными частями, как показано на рисунке выше. Хотя полярность катушки меняется из-за приложенного переменного тока, предположим, что верхняя часть временно находится на севере, а нижняя - на юге.

Полюса направляют южный поток снизу и снаружи катушки вверх. Эти 6-ю южные выступы чередуются с 6-ю северными ушками, загнутыми вверх из верхней части стального полюса катушки. Таким образом, стержень ротора с постоянным магнитом столкнется с 6-полюсными парами, соответствующими 6-ти циклам переменного тока за одно физическое вращение стержневого магнита.

Скорость вращения будет 1/6 электрической скорости переменного тока. Скорость ротора будет 1/6 от скорости 2-полюсного синхронного двигателя. Пример:60 Гц вращает 2-полюсный двигатель со скоростью 3600 об / мин или 600 об / мин для 12-полюсного двигателя.

Перепечатано с разрешения Westclox History на www.clockHistory.com

Статор (рисунок выше) показывает 12-полюсный синхронный часовой двигатель Westclox. Конструкция аналогична предыдущему рисунку с одной катушкой. Конструкция с одной обмоткой экономична для двигателей с низким крутящим моментом. Этот двигатель со скоростью 600 об / мин приводит в движение редукторы, перемещая стрелки часов.

В: Если бы двигатель Westclox работал со скоростью 600 об / мин от источника питания с частотой 50 Гц, сколько полюсов потребовалось бы?

А: У 10-полюсного двигателя будет 5 пар полюсов N-S. Он будет вращаться со скоростью 50/5 =10 оборотов в секунду или 600 об / мин (10 с-1 x 60 с / мин).

Перепечатано с разрешения Westclox History на www.clockHistory.com

Ротор (рисунок выше) состоит из стержня постоянного магнита и стальной чашки асинхронного двигателя. Штанга синхронного двигателя, вращающаяся внутри полюсных язычков, сохраняет точное время. Чашка асинхронного двигателя за пределами стержневого магнита подходит снаружи и над язычками для самозапуска. Одно время производились несамозапускающиеся двигатели без чашки асинхронного двигателя.

Трехфазные синхронные двигатели

Трехфазный синхронный двигатель, показанный на рисунке ниже, создает электрически вращающееся поле в статоре. Такие двигатели не запускаются автоматически, если они запускаются от источника питания с фиксированной частотой, например, 50 или 60 Гц, как в промышленных условиях.

Кроме того, ротор - это не постоянный магнит для двигателей с мощностью в несколько лошадиных сил (мультикиловатт), используемых в промышленности, а как электромагнит. Большие промышленные синхронные двигатели более эффективны, чем асинхронные. Они используются, когда требуется постоянная скорость. Обладая опережающим коэффициентом мощности, они могут корректировать линию переменного тока на запаздывающий коэффициент мощности.

Три фазы возбуждения статора складываются векторно, чтобы создать единое результирующее магнитное поле, которое вращается f / 2n раз в секунду, где f - частота линии электропередачи, 50 или 60 Гц для двигателей, работающих от промышленной линии электропередачи. Количество полюсов - n. Чтобы получить скорость ротора в об / мин, умножьте на 60.

 S =f120 / n где:S =скорость ротора в об / мин f =частота сети переменного тока n =количество полюсов на фазу 

Трехфазный 4-полюсный (на фазу) синхронный двигатель будет вращаться со скоростью 1800 об / мин при мощности 60 Гц или 1500 об / мин при мощности 50 Гц. Если катушки запитываются по очереди в последовательности φ-1, φ-2, φ-3, ротор должен по очереди указывать на соответствующие полюса.

Поскольку синусоидальные волны фактически перекрываются, результирующее поле будет вращаться не ступенчато, а плавно. Например, когда синусоидальные волны φ-1 и φ-2 совпадают, поле будет на пике, указывающем между этими полюсами. Показанный ротор стержневого магнита подходит только для небольших двигателей.

Ротор с несколькими полюсами магнита (внизу справа) используется в любом эффективном двигателе, приводящем в движение значительную нагрузку. Это будут электромагниты с контактным кольцом в крупных промышленных двигателях. Крупные промышленные синхронные двигатели запускаются самостоятельно за счет встроенных в якорь проводов с короткозамкнутым ротором, действующих как асинхронный двигатель.

Электромагнитный якорь возбуждается только после того, как ротор набирает скорость, близкую к синхронной.

Трехфазный 4-полюсный синхронный двигатель

Малые многофазные синхронные двигатели

Малые многофазные синхронные двигатели могут быть запущены путем линейного увеличения частоты привода от нуля до конечной рабочей частоты. Многофазные управляющие сигналы генерируются электронными схемами и будут прямоугольными во всех приложениях, кроме самых требовательных.

Такие двигатели известны как бесщеточные двигатели постоянного тока. Истинные синхронные двигатели управляются синусоидальными сигналами. Можно использовать двух- или трехфазный привод, запитав соответствующее количество обмоток статора. Выше показано только 3 фазы.

Электронный синхронный двигатель

На блок-схеме показана приводная электроника, связанная с синхронным двигателем низкого напряжения (12 В постоянного тока). У этих двигателей есть датчик положения . встроенный в двигатель, который обеспечивает сигнал низкого уровня с частотой, пропорциональной скорости вращения двигателя.

Датчик положения может быть таким же простым, как твердотельные датчики магнитного поля, такие как эффект Холла . устройства, обеспечивающие синхронизацию коммутации (направления тока якоря) с электроникой привода. Датчик положения может представлять собой датчик угла с высоким разрешением, например резольвер, индуктосин (магнитный энкодер) или оптический энкодер.

Если требуется постоянная и точная скорость вращения, (как для дисковода) тахометр и фазовая автоподстройка частоты могут быть включены (рисунок ниже). Этот сигнал тахометра, последовательность импульсов, пропорциональная скорости двигателя, возвращается в контур фазовой автоподстройки частоты, который сравнивает частоту и фазу тахометра со стабильным источником опорной частоты, например кварцевым генератором.

Контур фазовой автоподстройки частоты управляет скоростью синхронного двигателя

Бесщеточный двигатель постоянного тока

Двигатель, приводимый в действие прямоугольными волнами тока, обеспечиваемый простыми датчиками Холла, известен как бесщеточный двигатель постоянного тока . . Этот тип двигателя имеет более высокий пульсирующий момент . вариация через оборот вала, чем синусоида, управляемая двигателем. Для многих приложений это не проблема. Хотя в этом разделе нас в первую очередь интересуют синхронные двигатели.

Пульсации крутящего момента двигателя и механический аналог

Пульсации крутящего момента или зубчатые зацепления вызываются магнитным притяжением полюсов ротора к полюсным наконечникам статора. (Рисунок выше) Обратите внимание на отсутствие катушек статора. Ротор PM можно вращать вручную, но вблизи полюсные наконечники будут притягиваться к ним.

Это аналогично механической ситуации. Будет ли пульсация крутящего момента проблемой для двигателя, используемого в магнитофоне? Да, мы не хотим, чтобы двигатель поочередно ускорялся и замедлялся, когда он перемещает аудиозапись мимо кассетной воспроизводящей головки. Будет ли пульсация крутящего момента проблемой для двигателя вентилятора? Нет.

Обмотки, распределенные в ленте, создают более синусоидальное поле

Если двигатель приводится в действие синусоидальными волнами тока, синхронными с обратной ЭДС двигателя, он классифицируется как синхронный двигатель переменного тока, независимо от того, генерируются ли формы волны привода электронными средствами. Синхронный двигатель будет генерировать синусоидальную обратную ЭДС если магнитное поле статора имеет синусоидальное распределение.

Он будет более синусоидальным, если обмотки полюсов будут распределены в виде ремня через множество пазов, а не сосредоточены на одном большом полюсе (как показано на большинстве наших упрощенных иллюстраций). Такая конструкция подавляет многие нечетные гармоники поля статора.

Пазы с меньшим количеством витков на краю фазовой обмотки могут делить пространство с другими фазами. Намоточные ремни могут принимать альтернативную концентрическую форму, как показано на рисунке ниже.

Концентрические ремни

Для двухфазного двигателя, который приводится в действие синусоидальной волной, крутящий момент остается постоянным на протяжении всего оборота в соответствии с тригонометрической идентичностью:

 sin2θ + cos2θ =1 

Генерация и синхронизация формы волны привода требуют более точной индикации положения ротора, чем это обеспечивается датчиками Холла, используемыми в бесщеточных двигателях постоянного тока. преобразователь , или оптический или магнитный кодировщик , обеспечивает разрешение от сотен до тысяч частей (импульсов) на оборот.

Резольвер выдает аналоговые сигналы углового положения в виде сигналов, пропорциональных синусу и косинусу угла вала. Энкодеры обеспечивают цифровую индикацию углового положения в последовательном или параллельном формате.

Привод синусоидальной волны на самом деле может быть от ШИМ, широтно-импульсного модулятора . , высокоэффективный метод аппроксимации синусоидальной волны цифровым сигналом. Каждая фаза требует, чтобы управляющая электроника для этого сигнала была сдвинута по фазе на соответствующую величину.

ШИМ аппроксимирует синусоидальную волну

Преимущества синхронного двигателя

КПД синхронного двигателя выше, чем у асинхронных двигателей. Синхронный двигатель также может быть меньше, особенно если в роторе используются высокоэнергетические постоянные магниты. Появление современной полупроводниковой электроники позволяет управлять этими двигателями с регулируемой скоростью.

Асинхронные двигатели чаще всего используются в железнодорожной тяге. Однако небольшой синхронный двигатель, который устанавливается внутри ведущего колеса, делает его привлекательным для таких применений. высокотемпературный сверхпроводник версия этого двигателя составляет от одной пятой до одной трети веса двигателя с медной обмоткой.

Самый крупный экспериментальный сверхпроводящий синхронный двигатель способен управлять кораблем военно-морского эсминца. Во всех этих применениях важен электронный привод с регулируемой скоростью. Привод с регулируемой скоростью также должен снижать напряжение привода на низкой скорости из-за уменьшения индуктивного сопротивления на более низкой частоте.

Для развития максимального крутящего момента ротор должен отставать от направления поля статора на 90 °. Более того, он теряет синхронизацию. Гораздо меньше приводит к снижению крутящего момента. Таким образом, необходимо точно знать положение ротора. А положение ротора по отношению к полю статора необходимо рассчитывать и контролировать.

Этот тип управления известен как элемент управления векторной фазой . . Он реализован с помощью быстродействующего микропроцессора, управляющего широтно-импульсным модулятором фаз статора. Статор синхронного двигателя такой же, как и у более популярного асинхронного двигателя.

В результате электронное регулирование скорости промышленного уровня, используемое в асинхронных двигателях, также применимо к большим промышленным синхронным двигателям. Если ротор и статор обычного вращающегося синхронного двигателя раскручены, получается синхронный линейный двигатель.

Этот тип двигателя применяется для точного высокоскоростного линейного позиционирования.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:


Промышленные технологии

  1. Однофазные асинхронные двигатели
  2. Коллекторные двигатели переменного тока
  3. Как устранить неполадки двигателей с фазным ротором
  4. Совет по электродвигателям:минимизируйте количество запусков
  5. Технический совет:двигатели
  6. Преимущества двигателей с жидкостным охлаждением
  7. 7 шагов к улучшению технического обслуживания электродвигателей
  8. Электродвигатели постоянного и переменного тока:в чем их отличия?
  9. Двигатели и автоматика BLDC
  10. Введение в двигатель BLDC