Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Проводники, изоляторы и поток электронов

Электроны атомов разных типов имеют разную степень свободы передвижения. В некоторых типах материалов, таких как металлы, внешние электроны в атомах настолько слабо связаны, что они хаотично перемещаются в пространстве между атомами этого материала не более чем под влиянием тепловой энергии комнатной температуры. Поскольку эти практически несвязанные электроны могут свободно покидать свои соответствующие атомы и плавать в пространстве между соседними атомами, их часто называют свободными электронами . .

Проводники против изоляторов

В других типах материалов, таких как стекло, электроны атомов имеют очень небольшую свободу передвижения. Хотя внешние силы, такие как физическое трение, могут заставить некоторые из этих электронов покинуть свои соответствующие атомы и перейти к атомам другого материала, они не очень легко перемещаются между атомами внутри этого материала.

Эта относительная подвижность электронов в материале известна как электрическая проводимость . . Электропроводность определяется типами атомов в материале (количество протонов в ядре каждого атома определяет его химическую идентичность) и тем, как атомы связаны друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками . , а материалы с низкой подвижностью электронов (с небольшим количеством свободных электронов или без них) называются изоляторами . Вот несколько распространенных примеров проводников и изоляторов:

Следует понимать, что не все проводящие материалы имеют одинаковый уровень проводимости, и не все изоляторы одинаково устойчивы к движению электронов. Электропроводность аналогична прозрачности некоторых материалов для света:материалы, которые легко «проводят» свет, называются «прозрачными», а те, которые этого не делают, - «непрозрачными». Однако не все прозрачные материалы обладают одинаковой светопроводимостью. Оконное стекло лучше, чем большинство пластиков, и, конечно, лучше, чем «прозрачное» стекловолокно. То же самое и с электрическими проводниками, одни лучше других.

Например, серебро является лучшим проводником в списке «проводников», предлагая более легкий проход для электронов, чем любой другой упомянутый материал. Грязная вода и бетон также считаются проводниками, но эти материалы обладают значительно меньшей проводимостью, чем любой металл.

Также следует понимать, что некоторые материалы претерпевают изменения своих электрических свойств в различных условиях. Например, стекло является очень хорошим изолятором при комнатной температуре, но становится проводником при нагревании до очень высокой температуры. Такие газы, как воздух, обычно изолирующие материалы, также становятся проводящими при нагревании до очень высоких температур. Большинство металлов при нагревании становятся хуже проводниками, а при охлаждении - лучше. Многие проводящие материалы становятся идеально проводящими (это называется сверхпроводимостью ) при экстремально низких температурах.

Электронный поток / электрический ток

В то время как нормальное движение «свободных» электронов в проводнике является случайным, без определенного направления или скорости, электроны могут скоординированно перемещаться через проводящий материал. Это равномерное движение электронов и есть то, что мы называем электричеством . или электрический ток . Точнее, это можно было бы назвать динамическим электричеством . в отличие от статического электричества , который представляет собой неподвижное скопление электрического заряда. Так же, как вода, текущая через пустоту трубы, электроны могут перемещаться в пустом пространстве внутри и между атомами проводника. На наш взгляд проводник может показаться твердым, но любой материал, состоящий из атомов, по большей части представляет собой пустое пространство! Аналогия с потоком жидкости настолько уместна, что движение электронов через проводник часто называют «потоком».

Здесь можно сделать примечательное наблюдение. Поскольку каждый электрон равномерно движется через проводник, он толкает проводник впереди, так что все электроны движутся вместе как группа. Начало и остановка потока электронов по всей длине проводящего пути происходит практически мгновенно от одного конца проводника к другому, даже если движение каждого электрона может быть очень медленным. Примерная аналогия - трубка, заполненная встык мрамором:

Трубка полна шариков, так же как проводник полон свободных электронов, готовых к перемещению под воздействием извне. Если один шарик внезапно вставляется в эту полную трубку с левой стороны, другой шарик немедленно попытается выйти из трубки справа. Несмотря на то, что каждый шарик прошел лишь небольшое расстояние, передача движения через трубку происходит практически мгновенно от левого конца к правому, независимо от длины трубки. С электричеством общий эффект от одного конца проводника до другого происходит со скоростью света:быстрые 186 000 миль в секунду !!! Однако каждый отдельный электрон проходит через проводник за много медленнее.

Электронный поток через проволоку

Если мы хотим, чтобы электроны текли в определенном направлении в определенное место, мы должны обеспечить им правильный путь для движения, точно так же, как водопроводчик должен установить трубопровод, чтобы вода текла туда, где он или она хочет, чтобы она текла. Чтобы облегчить это, провода сделаны из металлов с высокой проводимостью, таких как медь или алюминий, самых разных размеров.

Помните, что электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала. Это означает, что может быть электрический ток только . где существует непрерывный путь из проводящего материала, по которому проходят электроны. В аналогии с мрамором, шарики могут течь в левую сторону трубки (и, следовательно, через трубку) тогда и только тогда, когда трубка открыта с правой стороны для вытекания шариков. Если трубка заблокирована с правой стороны, шарики будут просто «скапливаться» внутри трубки, и мраморный «поток» не произойдет. То же самое верно и для электрического тока:непрерывный поток электронов требует наличия непрерывного пути, позволяющего этот поток. Давайте посмотрим на схему, чтобы проиллюстрировать, как это работает:

Тонкая сплошная линия (как показано выше) является условным обозначением непрерывного отрезка проволоки. Поскольку проволока сделана из проводящего материала, такого как медь, составляющие ее атомы имеют много свободных электронов, которые могут легко перемещаться по проволоке. Однако в этом проводе никогда не будет непрерывного или равномерного потока электронов, если им не будет откуда взяться и куда пойти. Давайте добавим гипотетические «Источник» и «Назначение» электрона:

Теперь, когда Источник электронов проталкивает новые электроны в провод с левой стороны, поток электронов через провод может происходить (на что указывают стрелки, указывающие слева направо). Однако поток будет прерван, если токопроводящий путь, образованный проводом, будет нарушен:

Электрическая целостность

Поскольку воздух является изолирующим материалом, а два куска провода разделяет воздушный зазор, некогда непрерывный путь прерван, и электроны не могут течь от источника к месту назначения. Это похоже на разрезание водопроводной трубы на две части и закрытие ее сломанных концов:вода не может течь, если нет выхода из трубы. С точки зрения электричества, у нас было условие электрической непрерывности когда провод был одним куском, а теперь эта непрерывность прервана из-за того, что провод был разрезан и отделен.

Если бы мы возьмем другой кусок провода, ведущего к Пункту назначения, и просто вступим в физический контакт с проводом, ведущим к Источнику, у нас снова будет непрерывный путь для движения электронов. Две точки на схеме обозначают физический контакт (металл-металл) между кусочками провода:

Теперь у нас есть непрерывность от Источника до вновь созданного соединения, вниз, вправо и вверх до Назначения. Это аналогично установке тройника в одну из закрытых труб и направлению воды через новый сегмент трубы к месту назначения. Обратите внимание, что по обрыву провода с правой стороны не проходят электроны, потому что он больше не является частью полного пути от источника к месту назначения.

Интересно отметить, что из-за этого электрического тока внутри проводов не происходит «износа», в отличие от водопроводных труб, которые в конечном итоге подвергаются коррозии и изнашиваются из-за продолжительных течений. Однако при движении электроны сталкиваются с некоторым трением, и это трение может генерировать тепло в проводнике. Это тема, которую мы рассмотрим более подробно позже.

ОБЗОР:

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:


Промышленные технологии

  1. Провода и соединения
  2. Электронные трубки
  3. Цифры и символы
  4. Сумма и обозначение продукта
  5. Валентность и кристаллическая структура
  6. Электроны и «дыры»
  7. Сводка R, L и C
  8. Двойной шпиндель для профилей потока и свободного формования
  9. Лабораторный датчик расхода и температуры
  10. Разница между давлением и расходом