Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Промышленные технологии

Практические соображения - трансформаторы

Мощность

Как уже отмечалось, трансформаторы должны быть хорошо спроектированы, чтобы обеспечить приемлемую связь по мощности, точное регулирование напряжения и низкие искажения тока возбуждения. Кроме того, трансформаторы должны быть спроектированы так, чтобы без проблем выдерживать ожидаемые значения тока первичной и вторичной обмоток.

Это означает, что проводники обмотки должны быть изготовлены из проволоки соответствующего калибра, чтобы избежать проблем с нагревом.

Идеальный трансформер

Идеальный трансформатор должен иметь идеальную связь (без индуктивности рассеяния), идеальное регулирование напряжения, идеально синусоидальный ток возбуждения, отсутствие гистерезиса или потерь на вихревые токи и достаточно толстый провод, чтобы выдерживать любой ток. К сожалению, для достижения этих проектных целей идеальный трансформатор должен быть бесконечно большим и тяжелым.

Таким образом, в деле практического конструкция трансформатора, компромиссы должны быть найдены.

Кроме того, изоляция проводов обмотки является проблемой там, где встречаются высокие напряжения, как это часто бывает в повышающих и понижающих силовых распределительных трансформаторах.

Обмотки должны быть не только хорошо изолированы от стального сердечника, но и каждая обмотка должна быть достаточно изолирована друг от друга, чтобы обеспечить электрическую изоляцию между обмотками.

Рейтинги трансформаторов

С учетом этих ограничений трансформаторы рассчитаны на определенные уровни напряжения и тока первичной и вторичной обмоток, хотя номинальный ток обычно определяется исходя из номинального значения вольт-ампер (ВА), присвоенного трансформатору.

Например, возьмите понижающий трансформатор с номинальным напряжением первичной обмотки 120 В, номинальным напряжением вторичной обмотки 48 В и номинальной мощностью 1 кВА (1000 ВА) в ВА. Максимальные токи обмотки можно определить как таковые:кВА (1000 ВА). Максимальные токи обмотки можно определить как таковые:

Иногда обмотки имеют номинальный ток в амперах, но это обычно наблюдается на небольших трансформаторах. Для больших трансформаторов почти всегда указывается напряжение на обмотке, а также ВА или кВА.

Потери энергии

Когда трансформаторы передают мощность, они делают это с минимальными потерями. Как было сказано ранее, КПД современных силовых трансформаторов обычно превышает 95%. Однако хорошо знать, куда уходит часть этой потерянной энергии и что вызывает ее потерю.

Конечно, возможны потери мощности из-за сопротивления обмоток проводов. Если не используются сверхпроводящие провода, всегда будет рассеиваться мощность в виде тепла через сопротивление проводников с током. Поскольку для трансформаторов требуются провода такой большой длины, эти потери могут быть существенным фактором.

Увеличение диаметра обмоточного провода - один из способов минимизировать эти потери, но только при значительном увеличении стоимости, размера и веса.

Вихретоковые потери

Помимо резистивных потерь, большая часть потерь мощности трансформатора связана с магнитными эффектами в сердечнике. Возможно, наиболее существенной из этих «потерь в сердечнике» являются вихретоковые потери . , которая представляет собой рассеивание резистивной мощности из-за прохождения индуцированных токов через железо сердечника.

Поскольку железо является проводником электричества, а также отличным «проводником» магнитного потока, в железе будут индуцироваться токи точно так же, как во вторичных обмотках возникают токи из переменного магнитного поля.

Эти наведенные токи, как описано в пункте закона Фарадея о перпендикулярности, имеют тенденцию проходить через поперечное сечение сердечника перпендикулярно виткам первичной обмотки.

Их круговое движение дало им свое необычное название:как водовороты в потоке воды, которые циркулируют, а не движутся по прямым линиям.

Железо является хорошим проводником электричества, но не так хорошо, как медь или алюминий, из которых обычно делаются проволочные обмотки. Следовательно, эти «вихревые токи» должны преодолевать значительное электрическое сопротивление, поскольку они циркулируют по сердечнику.

Преодолевая сопротивление утюга, они рассеивают энергию в виде тепла. Следовательно, у нас есть источник неэффективности трансформатора, который трудно устранить.

Индукционный нагрев

Это явление настолько ярко выражено, что его часто используют как средство нагрева черных металлов (железосодержащих). На фотографии ниже показан блок «индукционного нагрева», повышающий температуру большого участка трубы.

Петли из проволоки, покрытые высокотемпературной изоляцией, охватывают окружность трубы, вызывая вихревые токи внутри стенки трубы за счет электромагнитной индукции. Чтобы усилить эффект вихревых токов, используется высокочастотный переменный ток, а не частота линии электропередачи (60 Гц).

Блоки в правой части изображения вырабатывают высокочастотный переменный ток и регулируют величину тока в проводах, чтобы стабилизировать температуру трубы на заранее определенном «заданном уровне».

Индукционный нагрев. Первичная изолированная обмотка индуцирует ток в железной трубе с потерями (вторичной).

Снижение вихревых токов

Основная стратегия уменьшения этих расточительных вихревых токов в сердечниках трансформаторов состоит в том, чтобы сформировать железный сердечник в виде листов, каждый из которых покрыт изолирующим лаком, чтобы сердечник был разделен на тонкие пластинки. В результате ширина сердечника очень мала для циркуляции вихревых токов:

Разделение железного сердечника на тонкие изолированные пластинки сводит к минимуму потери на вихревые токи.

Ламинированный сердечники, подобные показанному здесь, входят в стандартную комплектацию почти всех низкочастотных трансформаторов. Напомним, что на фотографии разрезанного пополам трансформатора видно, что железный сердечник состоит из множества тонких листов, а не из одной цельной детали.

Потери на вихревые токи увеличиваются с увеличением частоты, поэтому трансформаторы, предназначенные для работы от высокочастотной энергии (например, 400 Гц, используемой во многих военных и авиационных приложениях), должны использовать более тонкие пластины, чтобы снизить потери до приемлемого минимума.

Это имеет нежелательный эффект увеличения стоимости изготовления трансформатора.

Другой аналогичный метод минимизации потерь на вихревые токи, который лучше подходит для высокочастотных приложений, - это изготовление сердечника из железного порошка, а не из тонких листов железа.

Подобно ламинированным листам, эти гранулы железа индивидуально покрыты электроизоляционным материалом, который делает сердечник непроводящим, за исключением ширины каждой гранулы. Сердечники из порошкового железа часто используются в трансформаторах, работающих с радиочастотными токами.

Магнитный гистерезис

Еще одна «потеря в сердечнике» - это магнитный гистерезис . . Все ферромагнитные материалы имеют тенденцию сохранять некоторую степень намагниченности после воздействия внешнего магнитного поля.

Эта тенденция оставаться намагниченным называется «гистерезисом», и требуются определенные затраты энергии, чтобы преодолеть это противодействие, изменяющееся каждый раз, когда магнитное поле, создаваемое первичной обмоткой, меняет полярность (дважды за цикл переменного тока).

Этот тип потерь можно уменьшить за счет правильного выбора материала сердечника (выбор сплава сердечника с низким гистерезисом, о чем свидетельствует «тонкая» гистерезисная кривая B / H) и проектирования сердечника с минимальной магнитной индукцией (большая площадь поперечного сечения). .

Скин-эффект на высоких частотах

Потери энергии в трансформаторе увеличиваются с увеличением частоты. Скин-эффект внутри проводников обмотки уменьшает доступную площадь поперечного сечения для потока электрического заряда, тем самым увеличивая эффективное сопротивление при повышении частоты и создавая большие потери мощности из-за резистивного рассеивания.

Потери в магнитном сердечнике также увеличиваются из-за того, что более высокие частоты, вихревые токи и эффекты гистерезиса становятся более серьезными. По этой причине трансформаторы значительных размеров предназначены для эффективной работы в ограниченном диапазоне частот.

В большинстве систем распределения электроэнергии, где частота сети очень стабильна, можно подумать, что чрезмерная частота никогда не будет проблемой. К сожалению, это происходит в виде гармоник, создаваемых нелинейными нагрузками.

Как мы видели в предыдущих главах, несинусоидальные сигналы эквивалентны аддитивным сериям нескольких синусоидальных сигналов с разными амплитудами и частотами. В энергосистемах эти другие частоты являются целыми числами, кратными основной (линейной) частоте, что означает, что они всегда будут выше, а не ниже проектной частоты трансформатора.

В значительной степени они могут вызвать серьезный перегрев трансформатора. Силовые трансформаторы могут быть спроектированы для обработки определенных уровней гармоник энергосистемы, и эта способность иногда обозначается рейтингом «K-фактор».

Паразитная емкость и индуктивность

Помимо номинальной мощности и потерь мощности, трансформаторы часто имеют другие нежелательные ограничения, о которых следует знать разработчикам схем. Как и их более простые аналоги - катушки индуктивности - трансформаторы обладают емкостью из-за изоляционного диэлектрика между проводниками:от обмотки к обмотке, от витка к витку (в одной обмотке) и от обмотки к сердечнику.

Частота резонанса трансформатора

Обычно эта емкость не имеет значения в приложениях питания, но приложения с малыми сигналами (особенно с высокой частотой) могут плохо переносить эту причуду.

Кроме того, наличие емкости наряду с расчетной индуктивностью обмоток дает трансформаторам возможность резонировать . на определенной частоте, что определенно является проблемой проектирования в сигнальных приложениях, где применяемая частота может достигать этой точки (обычно резонансная частота силового трансформатора намного превышает частоту переменного тока, для которой он был разработан).

Сдерживание потока

Сдерживание потока (обеспечение того, чтобы магнитный поток трансформатора не ускользнул и не мешал работе другого устройства, а также обеспечение того, чтобы магнитный поток других устройств был экранирован от сердечника трансформатора) - еще одна проблема, которую разделяют как индукторы, так и трансформаторы.

Индуктивность утечки

Индуктивность рассеяния тесно связана с проблемой удержания потока. Мы уже видели пагубное влияние индуктивности рассеяния на регулирование напряжения с помощью моделирования SPICE в начале этой главы. Поскольку индуктивность рассеяния эквивалентна индуктивности, последовательно соединенной с обмоткой трансформатора, она проявляется как последовательное сопротивление с нагрузкой.

Таким образом, чем больше ток потребляет нагрузка, тем меньше напряжения на выводах вторичной обмотки. Обычно при проектировании трансформатора требуется хорошее регулирование напряжения, но есть и исключительные области применения.

Как указывалось ранее, для схем разрядного освещения требуется повышающий трансформатор с «слабым» (плохим) регулированием напряжения для обеспечения пониженного напряжения после возникновения дуги в лампе. Один из способов выполнить этот проектный критерий - спроектировать трансформатор с путями рассеяния магнитного потока в обход вторичных обмоток.

Результирующий поток рассеяния приведет к возникновению индуктивности рассеяния, что, в свою очередь, приведет к плохому регулированию, необходимому для разрядного освещения.

Насыщенность ядра

Трансформаторы также ограничены в своей работе из-за ограничений магнитного потока сердечника. Для трансформаторов с ферромагнитным сердечником необходимо учитывать пределы насыщения сердечника.

Помните, что ферромагнитные материалы не могут поддерживать бесконечную плотность магнитного потока:они имеют тенденцию «насыщаться» на определенном уровне (продиктованном материалом и размерами сердечника), а это означает, что дальнейшее увеличение силы магнитного поля (ммс) не приводит к пропорциональному увеличению магнитного поля. поток поля (Φ).

Когда первичная обмотка трансформатора перегружается из-за чрезмерного приложенного напряжения, магнитный поток сердечника может достигать уровней насыщения в пиковые моменты цикла синусоидальной волны переменного тока. Если это произойдет, индуцированное во вторичной обмотке напряжение больше не будет соответствовать форме волны напряжению, питающему первичную обмотку.

Другими словами, перегруженный трансформатор будет искажать форма волны от первичной до вторичной обмоток, создающая гармоники на выходе вторичной обмотки. Как мы уже обсуждали ранее, гармоники в энергосистемах переменного тока обычно вызывают проблемы.

Пиковые трансформаторы

Специальные трансформаторы, известные как пиковые трансформаторы использовать этот принцип для создания коротких импульсов напряжения вблизи пиков формы волны напряжения источника. Ядро рассчитано на быстрое и резкое насыщение при уровнях напряжения значительно ниже пикового.

Это приводит к сильно обрезанной форме волны синусоидального потока и импульсы вторичного напряжения только при изменении потока (ниже уровней насыщения):

Формы сигналов напряжения и магнитного потока для пикового трансформатора.

Работа на частотах ниже нормы

Другой причиной ненормального насыщения сердечника трансформатора является работа на частотах ниже нормы. Например, если силовой трансформатор, рассчитанный на работу при 60 Гц, вместо этого вынужден работать на частоте 50 Гц, магнитный поток должен достичь более высоких пиковых уровней, чем раньше, чтобы произвести такое же противоположное напряжение, необходимое для балансировки с напряжением источника.

Это верно, даже если напряжение источника такое же, как и раньше.

Магнитный поток выше в сердечнике трансформатора с частотой 50 Гц по сравнению с 60 Гц для того же напряжения.

Поскольку мгновенное напряжение обмотки пропорционально скорости изменения мгновенного магнитного потока в трансформаторе форма волны напряжения, достигающая того же пикового значения, но требующая большего количества времени для завершения каждого полупериода, требует, чтобы поток сохранял ту же скорость изменения, что и раньше, но в течение более длительных периодов времени.>

Таким образом, если поток должен расти с той же скоростью, что и раньше, но в течение более длительных периодов времени, он поднимется до более высокого пикового значения.

Математически это еще один пример исчисления в действии. Поскольку напряжение пропорционально скорости изменения магнитного потока, мы говорим, что форма волны напряжения является производной . формы волны магнитного потока, «производная» - это операция вычисления, определяющая одну математическую функцию (форму волны) с точки зрения скорости изменения другой.

Однако если мы возьмем противоположную точку зрения и свяжем исходную форму волны с ее производной, мы можем назвать исходную форму волны интегралом производной формы волны. В этом случае форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.

Интеграл любой математической функции пропорционален площади, накопленной под кривой этой функции. Поскольку каждый полупериод сигнала 50 Гц накапливает большую площадь между ним и нулевой линией графика, чем будет форма сигнала 60 Гц - а мы знаем, что магнитный поток является интегралом напряжения, - поток будет достигать более высоких значений в рисунок ниже.

Изменение потока с той же скоростью возрастает до более высокого уровня при 50 Гц, чем при 60 Гц.

Еще одна причина насыщения трансформатора - наличие постоянного тока в первичной обмотке. Любая величина постоянного напряжения, падающего на первичную обмотку трансформатора, вызовет дополнительный магнитный поток в сердечнике. Это дополнительное «смещение» или «смещение» магнитного потока подтолкнет форму волны переменного магнитного потока ближе к насыщению в одном полупериоде, чем в другом.

Постоянный ток в первичном смещении пиков формы волны в сторону верхнего предела насыщенности.

Для большинства трансформаторов насыщение сердечника является очень нежелательным эффектом, и его можно избежать за счет хорошей конструкции:спроектировав обмотки и сердечник таким образом, чтобы плотности магнитного потока оставались значительно ниже уровней насыщения.

Это гарантирует, что соотношение между mmf и Φ будет более линейным на протяжении всего цикла магнитного потока, что хорошо, поскольку способствует меньшим искажениям в форме волны тока намагничивания.

Кроме того, проектирование сердечника с учетом низких плотностей магнитного потока обеспечивает безопасный запас между нормальными пиками магнитного потока и пределами насыщения сердечника, чтобы приспособиться к случайным ненормальным условиям, таким как изменение частоты и смещение постоянного тока.

Пусковой ток

Когда трансформатор изначально подключен к источнику переменного напряжения, может возникнуть значительный скачок тока через первичную обмотку, называемый пусковым током . . Это аналогично пусковому току электродвигателя, который запускается при внезапном подключении к источнику питания, хотя бросок тока трансформатора вызван другим явлением.

Мы знаем, что скорость изменения мгновенного потока в сердечнике трансформатора пропорциональна мгновенному падению напряжения на первичной обмотке. Или, как указывалось ранее, форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.

В непрерывно работающем трансформаторе эти две формы сигнала сдвинуты по фазе на 90 °. Поскольку поток (Φ) пропорционален магнитодвижущей силе (mmf) в сердечнике, а mmf пропорционален току обмотки, форма волны тока будет синфазной с формой волны магнитного потока, и оба будут отстать от формы волны напряжения на 90 °:

Непрерывный установившийся режим:магнитный поток, как и ток, отстает от приложенного напряжения на 90 °.

Предположим, что первичная обмотка трансформатора внезапно подключается к источнику переменного напряжения в точный момент времени, когда мгновенное напряжение достигает своего положительного пикового значения.

Чтобы трансформатор создавал противоположное падение напряжения, чтобы уравновеситься с этим приложенным напряжением источника, должен создаваться магнитный поток быстро возрастающей величины. В результате ток в обмотке увеличивается быстро, но на самом деле не быстрее, чем при нормальных условиях:

Подключение трансформатора к линии при пиковом напряжении переменного тока:поток быстро увеличивается от нуля, как и в установившемся режиме.

И магнитный поток сердечника, и ток катушки начинаются с нуля и достигают тех же пиковых значений, которые наблюдаются при непрерывной работе. Таким образом, в этом сценарии нет «всплеска», «броска тока» или тока.

В качестве альтернативы давайте посмотрим, что произойдет, если подключение трансформатора к источнику переменного напряжения произойдет в тот момент, когда мгновенное напряжение равно нулю.

Во время непрерывной работы (когда трансформатор был запитан в течение некоторого времени), это момент времени, когда и магнитный поток, и ток обмотки достигают своих отрицательных пиков, испытывая нулевую скорость изменения (dΦ / dt =0 и di / dt =0).

По мере того, как напряжение достигает своего положительного пика, формы волны магнитного потока и тока нарастают до своих максимальных положительных скоростей изменения и повышаются до своих положительных пиков по мере того, как напряжение опускается до нулевого уровня:

Запуск при e =0 V не то же самое, что непрерывный запуск на рисунке выше. Эти ожидаемые формы сигналов неверны - Φ и я должен начинать с нуля.

Однако существует значительная разница между работой в непрерывном режиме и условием внезапного пуска, предполагаемым в этом сценарии:во время непрерывной работы уровни магнитного потока и тока были на своих отрицательных пиках, когда напряжение было в нулевых точках; однако в трансформаторе, который простаивает, и магнитный поток, и ток обмотки должны начинаться с нуля .

Когда магнитный поток увеличивается в ответ на повышение напряжения, он будет увеличиваться от нуля вверх, а не из ранее отрицательного (намагниченного) состояния, как это обычно бывает в трансформаторе, который какое-то время находится под напряжением.

Таким образом, в трансформаторе, который только что «запускается», магнитный поток будет примерно в два раза превышать нормальную пиковую величину, поскольку он «интегрирует» область под первым полупериодом формы волны напряжения:

Начиная с e =0 V, Φ начинается с начального условия Φ =0, увеличиваясь в два раза по сравнению с нормальным значением, при условии, что ядро ​​не насыщается.

В идеальном трансформаторе ток намагничивания также увеличился бы примерно в два раза по сравнению с нормальным пиковым значением, генерируя необходимый mmf для создания этого потока, превышающего нормальный.

Однако большинство трансформаторов не спроектированы с достаточным запасом между нормальными пиками магнитного потока и пределами насыщения, чтобы избежать насыщения в таких условиях, и поэтому сердечник почти наверняка будет насыщаться в течение этого первого полупериода напряжения.>

Во время насыщения для генерации магнитного потока необходимо непропорционально большое количество ммс. Это означает, что ток обмотки, который создает МДС, вызывающую магнитный поток в сердечнике, непропорционально возрастет до значения, легко превышающего вдвое больше обычного пика:

Начиная с e =0 В, ток также увеличивается в два раза по сравнению с нормальным значением для ненасыщенного сердечника или значительно выше в случае (предназначенного для) насыщения.

Это механизм, вызывающий пусковой ток в первичной обмотке трансформатора при подключении к источнику переменного напряжения. Как видите, величина пускового тока сильно зависит от точного времени, в течение которого выполняется электрическое подключение к источнику.

Если трансформатор имеет некоторый остаточный магнетизм в его сердечнике в момент подключения к источнику, бросок тока может быть еще более серьезным. Из-за этого устройства максимальной токовой защиты трансформатора обычно бывают «медленно действующими», чтобы выдерживать такие скачки тока без размыкания цепи.

Тепло и шум

Помимо нежелательных электрических эффектов, трансформаторы могут также проявлять нежелательные физические эффекты, наиболее заметными из которых являются выделение тепла и шума. Шум - это в первую очередь неприятный эффект, но нагрев - потенциально серьезная проблема, потому что изоляция обмотки будет повреждена, если будет допущен перегрев.

Нагрев можно свести к минимуму за счет хорошей конструкции, гарантирующей, что сердечник не приближается к уровням насыщения, что вихревые токи сведены к минимуму, и что обмотки не будут перегружены или работают слишком близко к максимальной допустимой нагрузке.

Сердечник и обмотки больших силовых трансформаторов погружены в масляную ванну для передачи тепла и глушения шума, а также для вытеснения влаги, которая в противном случае может нарушить целостность изоляции обмотки.

Теплоотводящие «радиаторные» трубки на внешней стороне корпуса трансформатора обеспечивают путь конвективного потока масла для передачи тепла от сердечника трансформатора к окружающему воздуху:

Большие силовые трансформаторы погружены в теплоизолирующее масло.

Безмасляные или «сухие» трансформаторы часто оцениваются с точки зрения «повышения» максимальной рабочей температуры (превышения температуры окружающей среды) в соответствии с системой буквенных классов:A, B, F или H. Эти буквенные коды расположены в порядке от наименьшей термостойкости к высшей:

Слышимый шум - это эффект, в основном возникающий из-за явления магнитострикции . :небольшое изменение длины ферромагнитного объекта при намагничивании.

Знакомый «гул», слышимый вокруг больших силовых трансформаторов, - это звук расширения и сжатия железного сердечника с частотой 120 Гц (вдвое больше частоты системы, которая в США составляет 60 Гц) - один цикл сжатия и расширения сердечника для каждого пика напряжения. форма волны магнитного потока плюс шум, создаваемый механическими силами между первичной и вторичной обмотками.

Опять же, поддержание низких уровней магнитного потока в сердечнике является ключом к минимизации этого эффекта, что объясняет, почему феррорезонансные трансформаторы, которые должны работать в режиме насыщения для большей части формы волны тока, работают как в горячем состоянии, так и с шумом.

Потери из-за обмоточных магнитных сил

Еще одно шумовое явление в силовых трансформаторах - это физическая сила реакции между первичной и вторичной обмотками при большой нагрузке.

Если вторичная обмотка разомкнута, через нее не будет тока и, следовательно, не будет создаваемой ею магнитодвижущей силы (ммс). Однако, когда вторичная обмотка «нагружена» (в настоящее время подается на нагрузку), обмотка генерирует МДС, которой противодействует «отраженная» МДС в первичной обмотке, чтобы предотвратить изменение уровней магнитного потока сердечника.

Эти противоположные МДС, возникающие между первичной и вторичной обмотками в результате вторичного (нагрузочного) тока, создают физическую силу отталкивания между обмотками, которая заставляет их вибрировать.

Разработчики трансформаторов должны учитывать эти физические силы при конструкции обмоток, чтобы обеспечить адекватную механическую опору для выдерживания напряжений. Однако в условиях большой нагрузки (высокого тока) эти напряжения могут быть достаточно большими, чтобы вызвать слышимый шум, исходящий от трансформатора.

ОБЗОР:


Промышленные технологии

  1. Текущий разделитель
  2. Введение в схемы переменного тока
  3. Производные степенных функций от e
  4. Защитные реле
  5. Практические соображения - цифровая коммуникация
  6. Практические соображения - индукторы
  7. Ток, мощность и крутящий момент в приводах с регулируемой скоростью
  8. Введение в гармоники:часть 2
  9. Основные принципы рекуперативных приводов — часть 2
  10. 4 теста, определяющих эффективность силовых трансформаторов