Промышленное производство
Промышленный Интернет вещей | Промышленные материалы | Техническое обслуживание и ремонт оборудования | Промышленное программирование |
home  MfgRobots >> Промышленное производство >  >> Manufacturing Technology >> Производственный процесс

Вырасти сам | GIY

Компоненты и расходные материалы

Microchip Technology ATmega32U4
× 1
Espressif ESP8266 ESP-12E
× 1
Кристалл, 16 МГц
× 1
N-канал Power MOSFET
× 4
Модуль регулятора напряжения Digilent
× 1
Датчик температуры и влажности DHT11 (4 контакта)
× 1
Цифровой термометр 1-Wire с программируемым разрешением Maxim Integrated DS18B20
× 1
Щелчок MikroE Water Detect
× 1
ЖК-экран Arduino
× 1
Фоторезистор
× 1

Необходимые инструменты и машины

3D-принтер (общий)
Лазерный резак (универсальный)

Приложения и онлайн-сервисы

Autodesk Fusion 360
IDE Arduino

Об этом проекте

Введение

Я был очень вдохновлен, когда посмотрел выступление TED Talk о цифровом сельском хозяйстве, представленное директором Инициативы открытого сельского хозяйства Массачусетского технологического института Калебом Харпером, в котором была высказана тема: Этот компьютер будет выращивать вашу пищу в будущем . Самый важный вопрос, затронутый в его выступлении, который действительно вдохновил меня, был:«Что, если бы мы могли выращивать вкусную, богатую питательными веществами пищу в помещении в любой точке мира?» И вот тут родилась идея!

Итак, я пытаюсь сделать что-то вроде ящика или инкубатора, способного создать идеальные климатические условия, необходимые для роста, обеспечивая ровно столько света и питательных веществ, сколько нужно растению. Я хочу собрать эмулятор солнечного света, систему орошения и климатический контроллер в одном элегантном и современном дизайне.

Планирую достичь желаемых результатов, внедрив следующую технологию:

Увеличить светодиодный свет - Хлорофилл в растениях в первую очередь реагирует только на две длины волны, представленные 450 нм и 650 нм. Светодиодная система, которую я планирую использовать, будет иметь комбинацию красных и синих светодиодов, чтобы обеспечить идеальное сочетание, помогающее как вегетативному, так и цветущему росту.

Ультразвуковой распылитель (генератор тумана) - Я хочу использовать новый метод полива, который я недавно обнаружил для себя, называемый аэропоникой (FogPonics), который поливает растения туманом, наполненным удобрениями.

Автоматическое дозирование питательных веществ - Эта система будет автоматически дозировать питательные вещества для растений именно тогда, когда они в этом нуждаются.

Система обнаружения воды - Я хочу оснастить свою систему датчиками pH и TDS (Total Dissolved Solids), чтобы поддерживать сбалансированное значение pH в резервуаре с водой, которое лучше всего подходит для растений, а также знать и предупреждать, когда следует дозировать питательные вещества.

Система водообмена - система должна быть оборудована устройством для автоматической подмены воды. Я хочу упростить этот процесс и контролировать его одним нажатием кнопки.

Система контроля воздуха - Это позволяет точно контролировать температуру и влажность внутри системы, вплоть до одного градуса. В основе лежащей в основе технологии лежит использование датчика температуры / влажности, такого как DHT22 или DHT11, для получения данных и вентилятора с змеевиком для его соответствующей регулировки.

Мобильное приложение - Я действительно хочу впервые в жизни создать приложение! Это приложение должно включать информацию в реальном времени об уровне pH, температуре, влажности, питательных веществах, промилле и т. Д., А также графическое представление с течением времени, чтобы отслеживать статистику и делиться прогрессом роста в социальных сетях. Я также хочу реализовать интеллектуальные оповещения, которые сообщат мне, когда системе потребуется мое участие. Я также хочу не только получать представление данных на свой телефон, но и иметь возможность настраивать климатические условия внутри системы!

К сожалению, я не первый, кто придумал такую ​​идею, но лучший способ придумать творческую идею - это улучшить уже существующие!

На рынке доступно несколько подобных проектов, однако, несмотря на все индивидуальные преимущества, у них также есть некоторые недостатки, такие как занимать слишком много места или быть слишком маленькими, слишком дорогими, выращивать только один урожай за раз и т. Д. тщательно исследовать и проанализировать сильные и слабые стороны имеющихся проектов и, учитывая реакцию рынка, я хочу предложить новую передовую систему с открытым исходным кодом, которая уменьшит недостатки и будет реализовывать только лучшие функции.

Очень амбициозно, не правда ли? Но давайте попробуем

Эксперименты

Работа с растениями отнимает очень много времени! Для роста им обычно требуется от нескольких недель до нескольких месяцев, и я должен быть к этому готов!

Поскольку я уже знаю, что хочу построить для своего финального проекта, я должен позаботиться об этом заранее и не оставлять все на последний момент. Поэтому я начну тестировать и экспериментировать как можно скорее!

Первое, что я хочу выяснить, это то, что выращивание растений с использованием тумана, богатого питательными веществами и выращивать светодиодные фонари лучше, чем обычная система в почве и естественном солнечном свете! По идее, так и должно быть, но я ни во что не верю, пока не попробую!

Поэтому я решил начать свой собственный эксперимент, на который потребуется некоторое время, и он заключается в разделении растений на несколько групп:

  • (почва + солнечный свет) - эта группа будет расти в абсолютно естественных условиях, посажена в почву и поставлена ​​на подоконник.
  • (туман + солнечный свет) - эта группа будет помещена в контейнер, внутри которого будет насыщенный питательными веществами туман, а также будет помещена на тот же подоконник.
  • (Светодиодная лампа Soil + Grow) - эта группа будет в почве, но будет использовать искусственный светодиодный светильник Grow вместо солнечного света.
  • (Туман + светодиодный индикатор роста) - это должен быть ГЕРОЙ group) Поскольку моя будущая система будет реализовывать эти две функции, светодиодный свет для выращивания растений и богатое питательными веществами облако тумана, я надеюсь обнаружить, что эта комбинация покажет наилучшие результаты!

В местном немецком магазине Kaufland, в отделе растений, я купил семена травяных смесей. Это будут мои подопытные младенцы:p

Впервые в жизни я что-то сажал:D Не судите меня, если я что-то сделал не так!)

Раньше я просмотрел несколько уроков и узнал, что сначала нужно проращивать семена. Я взял пластиковый контейнер, в который поместил семена, и накрыл их бумажным полотенцем. На данном этапе им нужна почти 100% влажность, поэтому я полил бумажные полотенца спреем и накрыл емкость полиэтиленовым пакетом, чтобы вода не испарялась.

Я оставила семена на 1,5 недели, и когда открыла контейнер, я была очень удивлена!

Почти все семена проросли! Я был счастлив как ребенок)

Затем мне нужно было выбрать лучшие маленькие растения, у которых был самый толстый стебель, и они просто выглядели больше и лучше в целом.

В уроке, за которым я следил (блогер YouTube), парень рекомендовал сажать маленькие растения в любую среду, пока они не дадут так называемые «вторые листья». На Amazon я заказал гранулы кокосовой койры . Они являются органическими, имеют свойства, аналогичные свойствам почвы, и что самое интересное, когда гранулы поливаются, они становятся в 6 раз больше в размере.

Еще я купил ящик, в котором специально для посадки есть сепараторы! Я получил его всего за 2 евро, и это сделало вещи более организованными. Я поместил кокосовые гранулы в разделители коробки, полил их до тех пор, пока они не стали полностью увлажненными, поместил маленькие растения в середину и накрыл коробку прозрачным куском пластика, входящим в комплект коробки.

Моя теплица выглядела так:

Я закрыл коробку и оставил ее на неделю!

И снова, когда я его открыл, я был удивлен! Они действительно стали больше! Я никогда не мог представить, что смогу вырастить какие-то растения, я еле ухаживаю за собой:D

Через неделю разница заметна!

Теперь, когда я вижу первые корни, я могу поместить их в землю и глиняные шары и начать экспериментировать с туманом!

Во время недели компьютерного дизайна я разработал сетчатые чашки, в которые я поместил растения

Я также купил в местном магазине пластиковый контейнер с приблизительными размерами, которые мне нужны, и сделал наброски отверстий, которые нужно просверлить!

А вот и моя собранная тестовая система с растениями внутри кокосовых гранул и глиняных шариков, а также с почвой!

Если честно, результаты могли быть лучше:D

Лишь несколько растений выжили в моей системе тумана. Я предполагаю, что это из-за среды выращивания! Туман недостаточно силен, чтобы удерживать влажными ни глиняные шары, ни почву.

Пасхальный перерыв!

Во время пасхальных каникул я ничего не делал, а поскольку лаборатория была закрыта, вся система тоже была отключена. Итак, все мои растения погибли

Со свежим умом я решил создать другую систему, но на этот раз с использованием другой среды выращивания на основе предыдущих наблюдений

Среда для выращивания, которую я выбрал для этой системы, - Rock Wool . . Купила в местном магазине ИКЕА. Я также купил пару семян в их отделе

И я поместил новые семена в минеральную вату для проращивания на одну неделю!

Через неделю я поставил галочку и заметил, что один тип семян был успешным, а другой - нет! Из-за нехватки времени я продолжил с проросшими семенами

Тем временем я установил другую систему тумана и постараюсь увеличить время ее работы, чтобы посмотреть, смогу ли я прорастить семена с помощью тумана, ТОЛЬКО ТУМАН!

Я буду продолжать экспериментировать с различными параметрами и настройками и посмотрю, как далеко я смогу достичь!)

Дизайн и производство электроники

Прежде чем приступить к разработке окончательной платы, я сел, чтобы нарисовать на листе бумаги все особенности и требования, которые плата должна реализовать и удовлетворить! Я также отслеживаю, сколько контактов будет использоваться, чтобы лучше оценить и решить, какой будет последний микропроцессор

Вот набросок того, что должно быть на доске:

Окончательный выбор доски был между сатшакит . от Даниэле Инграссиа и FABLEO Джонатан Гринхэм

satshakit - это на 100% совместимая с Arduino IDE и библиотеки, потрясающая плата с открытым исходным кодом, а также улучшенная версия Fabkit.

Основные улучшения и функции по сравнению с Fabkit:

  • 16 МГц вместо 8 МГц
  • кристалл вместо резонатора
  • стоит меньше (7–9 евро против 13 евро).
  • 100% совместимость с Arduino IDE по умолчанию (satshakit распознается как Arduino UNO)
  • ADC6 / 7 подключен вместо ADC6 / 7 не подключен (лазер сатшакит и чпу)
  • больше места для легкой пайки (лазер Satshakit и чпу)

С другой стороны, FabLeo имеет очень похожие функции, плюс аппаратный USB! Поскольку раньше я уже использовал ATmega328p, я хотел попробовать что-то новое и решил использовать дизайн FabLeo в качестве отправной точки

Моя библия и руководством №1 для этого назначения была распиновка ATmega32u4

Для разработки платы я буду использовать программное обеспечение EAGLE . (Легко применимый графический редактор компоновки) - это гибкий и расширяемый редактор схем EDA, макет печатной платы, автотрассировщик и программа CAM. EAGLE популярен среди любителей благодаря своей бесплатной лицензии и широкой доступности библиотек компонентов в Интернете.

В Eagle есть два окна, которые используются одновременно для проектирования доски:

  • Схема (.sch) - логические компоненты
  • Макет доски (.brd) для самой доски, которую мы фрезеруем.

После того, как я установил EAGLE, первое, что я хочу сделать, это Создать новую схему . . Схема в электронике - это рисунок, представляющий электрическую цепь. Он использует символы для обозначения реальных электронных компонентов. Самый простой символ - это простой проводник (следы), показанный просто линией. Если провода соединяются на схеме, они показаны точкой на пересечении.

Чтобы разместить свои компоненты на схемах, мне нужно загрузить и использовать специальные библиотеки . . Eagle имеет множество встроенных библиотек компонентов, которые мы можем использовать. Сеть fab также поддерживает библиотеку, которая постоянно обновляется:

fab.lbr

Чтобы установить библиотеку, в среде EAGLE перейдите на верхнюю панель инструментов и выберите Библиотека меню. Затем выберите использовать и откройте .lbr файл, который я только что загрузил.

Теперь я могу перейти к Добавить компонент и выбрав библиотеку, я выбираю компонент, который хочу разместить.

Когда все компоненты размещены на моей схеме, я должен подключить каждый из них к контактам микропроцессора. В левом меню EAGLE я нажимаю Net . , команда, которая позволяет рисовать зеленые линии и соединять контакты. Важно начать соединение с маленькой полоски на штыре (я пометил ее на картинке)

Чтобы избежать множественных подключений, я буду использовать ярлыки . . В левом меню EAGLE я нажимаю Добавить метку . и добавляю в конец моей соединительной линии. Если я нажму правую кнопку мыши а затем выберите имя , Я могу присвоить метке то же имя, которое я использовал для вывода микропроцессора, и соединить их таким образом!

Если я все сделал правильно, должно появиться сообщение: Вы уверены, что хотите подключить свой лейбл (N $ 10) к GND?

На этом этапе в химии важна логика . всех подключений, а не так, как это выглядит. После того, как я разместил все компоненты и логически соединил их, это выглядит так:

Я добавил AVRISP pinheaders и разместил их в порядке, соответствующем разъему. Эти контакты будут использоваться для программирования моей платы.

Вот схема USB схема вместе с кристаллом

Я также добавил регулятор напряжения схема, которая будет питать всю плату, преобразуя входное напряжение 12 В в 5 В

Одна из важных особенностей этой платы - MOSFET . цепей, я добавил их 4, 3 подключены напрямую ко входу (12В), а одна будет подключена к повышающему стабилизатору напряжения. Последний будет использоваться для питания тумана, который работает от 24 В

После того, как я дважды проверил все подключения, я могу перейти к следующему шагу, а именно к макету платы . . В верхнем меню я нажимаю Generate / Switch to Board . .

Первое, что я делаю, это увеличиваю сетку разрешающая способность. Я перехожу в Просмотр меню и нажмите Сетка и измените значения на 0,01 . Это позволит мне быть более точным при рисовании линий маршрута.

Удивительно, но разводка самой сложной платы, которую я сделал до сих пор, оказалась самой быстрой!) Я горжусь собой. Опыт изготовления досок хорошо повлиял на повышение скорости. После того, как я закончил трассировку, зверька выглядит так:

Для этой доски я также использую трюк, которому научился ранее. Я рисую многоугольник вокруг своих компонентов и нажимаю правой кнопкой мыши на линии многоугольника я меняю имя на GND. Это заполнит всю область внутри многоугольника и сделает его заземлением.

Это сэкономит много времени, места и усилий

Когда я все перепроверяю, я могу Экспорт мой файл как .png рисунок.

В появившемся окне я увеличиваю разрешение до 1500 dpi . нажмите монохромный и выберите окно режим.

Чтобы отредактировать изображение .png, я буду использовать "Я открываю свое изображение в GIMP ". и с помощью прямоугольного инструмента выделения , Я выделяю изображение, оставляя немного свободного места со всех сторон. После того, как я нажму File и Копировать выбранную область. Чтобы продолжить работу с выбранным изображением, я снова нажимаю Файл . и Создать из буфера обмена

Вот что я получаю после всех правок:

Это изображение готово к печати, и я назову его Inside_Cut .

Я готовлю процесс наружной резки , и вот что я получаю:

Поскольку моя доска двусторонняя, мне нужно фрезеровать две части, а затем склеить их. Единственное, что нужно помнить, это то, что нижняя часть должна быть зеркально отражена по горизонтали .

Нижняя часть Внутренний разрез

Нижняя часть Outside_Cut

Теперь я могу перейти к фрезерному станку с ЧПУ. Итак, я снова использовал FabModules для преобразования файлов .PNG в Gcodes для станка Roland.

Приступим к работе с Fab модулями. Когда я ввожу IP-адрес в окно браузера, первым появляется интерфейс:

После нажатия серой кнопки формат ввода , должно появиться новое меню с возможностью загрузки изображения .PNG. Здесь я загружаю первое изображение - внутреннюю гравировку. После этого предварительный просмотр изображения появится в модулях Fab, а также появятся другие поля и другие параметры

В правой части окна у нас много входных параметров. Чтобы иметь возможность перемещать машину, мы должны ввести следующие параметры:

mod_lp.py / dev / usb / lp0 в команду отправки поле

имя_хоста_вашей_машины на сервер поле (просто адрес без http или /)

Чтобы переместить машину, я просто ввожу в соответствующие поля координаты положения x, y и z. Перед перемещением машины я должен убедиться, что zjog параметр всегда установлен на 0, даже если он изменится автоматически. Чтобы переместить машину, мне нужно нажать перейти к xyz0 кнопка.

* Небольшой лайфхак использовать мультиметр и проверить, есть ли соединение между инструментом и поверхностью. В качестве инструмента для гравировки печатной платы рекомендуется использовать диаметр от 0,2 мм и ниже, а для резки мы можем использовать 1 мм инструмент.

Итак, мои окончательные настройки выглядят так:

Для внешнего среза настройки остались прежними, за исключением значения оси Z, так как я заменил инструмент 0,2 мм на инструмент 1 мм. Вот как это выглядит:

Повторите тот же процесс для нижней части . и фрезеруем внутреннюю и внешнюю части:

Это окончательный результат для Top часть:

И снизу часть:

А теперь Давайте спаяем это!

Чтобы убедиться, что все правильно спаял, после пайки каждого компонента я использовал мультиметр to check if there is conductivity between the component and the traces.

Short animation of the process:

When I plugged in the PCB board to check if everything is fine, I noticed an error. From experience, I know that the error was from a short circuit, because the computer was disconecting the Arduino all the time I connect the VCC and GND to it. So my guess was that somewhere on the board VCC and GND are connected, and using the multimeter, I confirmed that I was right.

It was late, and I got so f*ckin' mad because of that, took me one hour under the microscope to find that little mistake. Here it is:

I fixed it by scratching with a knife, and increasing the isolation!

Another thing is placing the Step Up Voltage Reguator on the back side of my board.

I measured the dimensions in advance, and designed predrilled holes to fix it with the pinheaders. But before soldering it on the back side, I have to calibrate it.

The idea is that when I power the board with 12V, the step up will output 24V necessary for the Ultrasonic Atomizer, which is connected to the MOSFET circuit

I used the bench power supply, with a fixed 12V, to measure the output voltage using a multimeter.

After I adjust the output to the one that I need, 24V in my case, I can solder it to the back side of my board!

Also on the back side, I placed the WiFi board which I made during the Networking and Communications week!

So, here is The BEAST :

A HERO picture for those who may think that it was easy, and everything went smooth :D

Download Files:

GIY Schematics (.sch)

GIY Layout (.brd)

Board#1 Internal Cut(.png)

Board#1 External Cut (.png)

Board#2 Internal Cut (.png)

Board#2 External Cut (.png)

Wiring &Embedded programming (I/O Devices)

To program my board I used Arduino IDE . I connect the arduino board to the USB hub, in the tools menu select the right board (Arduino Leonardo) and the port, after go to File --> examples and open the Arduino as ISP эскиз. Загрузите код.

After I see done uploading, which means that the code is uploaded to the board, I disconnect the arduino from the PC. The next step is to connect my PCB board to Arduino using some wires. The connection scheme is this one:

  • SCLK:Serial Clock (output from master) ----------> Arduino Pin 13
  • MOSI:Master Output Slave Input ----------> Arduino Pin 11
  • MISO:Master Input Slave Output ----------> Arduino Pin 12
  • VCC:Positive supply voltage ----------> Arduino VCC
  • GND:Ground ----------> Arduino GND
  • RST:----------> Arduino Pin 10

I connect the arduino board to the USB hub. Under Tools select the right board, select Arduino as ISP programmer, double check the parameters, and press the Burn Bootloader button.

And I see Done Uploading! Good sign)

To test the board, I upload the basic Blink example code:

Ohh, I LOVE that BLINK :D      Now let's go to sensors!

First sensor that I want to use is DHT11 - Temperature &Humidity Sensor

These sensors are very basic and slow, but are great for hobbyists who want to do some basic data logging. The DHT sensors are made of two parts, a capacitive humidity sensor and a thermistor. There is also a very basic chip inside that does some analog to digital conversion and spits out a digital signal with the temperature and humidity. The digital signal is fairly easy to read using any microcontroller.

Some characteristics:

  • Ultra low cost
  • 3 to 5V power and I/O
  • 2.5mA max current use during conversion (while requesting data)
  • Good for 20-80% humidity readings with 5% accuracy
  • Good for 0-50°C temperature readings ±2°C accuracy
  • No more than 1 Hz sampling rate (once every second)
  • Body size 15.5mm x 12mm x 5.5mm
  • 4 pins with 0.1" spacing

The wiring is pretty easy, just VCC, GND, and any Digital Pin! In my case, I designed in advance the connection for this sensor.

To test it, I will upload a simple sketch. The sketch includes the library DHT.h

So here is the code:

 // DHT11 Temperature and Humidity Sensors Example#include "DHT.h" //include DHT library#define DHTPIN 2 //define as DHTPIN the Pin 2 used to connect the Sensor#define DHTTYPE DHT11 //define the sensor used(DHT11)DHT dht(DHTPIN, DHTTYPE); //create an instance of DHTvoid setup() { Serial.begin(9600); //initialize the Serial communication dht.begin(); //initialize the Serial communication}void loop() { float h =dht.readHumidity(); // reading Humidity float t =dht.readTemperature(); // read Temperature as Celsius (the default) Serial.print("Temperature ="); Serial.println(t, 2); //print the temperature Serial.print("Humidity =");; Serial.println(h, 2); //print the humidity delay(2000); //wait 2 seconds } 

When I open the Serial Monitor, this is what I get:

Another sensor which I want to use is DS18B20 - One Wire Digital Temperature Sensor

DS18B20 is 1-Wire digital temperature sensor from Maxim IC. Reports degrees in Celsius with 9 to 12-bit precision, from -55 to 125 (+/-0.5). Each sensor has a unique 64-Bit Serial number etched into it - allows for a huge number of sensors to be used on one data bus.

This is by far one of the most simple digital sensors to hookup. Aside from power and ground, it has a single digital signal pin that I will be connecting to digital pin which I designed in advance. It also requires a 4.7k pull-up resistor between the signal and power pin, which unfortunately I forgot to place on my PCB. That is why, I will solder it manually directly to the sensor cables.

Before I start, I have to download the libraries:OneWire.h and DallasTemperature.h

Upload the following sketch:

 // First we include the libraries#include #include #define ONE_WIRE_BUS 3 // Setup a oneWire instance to communicate with any OneWire devices, (not just Maxim/Dallas temperature ICs) OneWire oneWire(ONE_WIRE_BUS); // Передаем нашу ссылку oneWire в Dallas Temperature. DallasTemperature sensors(&oneWire);void setup(void) { // start serial port Serial.begin(9600); sensor.begin (); } void loop(void) { // call sensors.requestTemperatures() to issue a global temperature (request to all devices on the bus)sensors.requestTemperatures(); // Send the command to get temperature readings Serial.print("Temperature is:"); Serial.print(sensors.getTempCByIndex(0)); //You can have more than one DS18B20 on the same bus. 0 refers to the first IC on the wire delay(1000); }  

The funny thing is that after I successfully programmed the sensor, It stopped working while I was integrating all the sensors together! I spend quite a long time trying to figure out why it does not work, but due to the limited time, I decided to use another DS18B20 sensor which was available in our FabLab stock, and waterproof it by myself!

So I took the sensor, and used the datasheet to properly solder the cables, and isolate them from each other using shrink tubes

I guess you have got the idea how I am going to waterproof it, right? :D Mama ama engineer!

Said &DONE!

Yeah, I know what it looks like :D but I assure you, its just a hand waterproof sensor. The most important is that it works, and does not leak when submerged in water!

And we go to the next sensor which is LDR =Light Dependent Resistor

LDR is a passive electronic component, basically a resistor which has a resistance that varies depending of the light intensity. The resistance is very high in darkness, almost high as 1MΩ but when there is light that falls on the LDR, the resistance is falling down to a few KΩ (10-20kΩ @ 10 lux, 2-4kOmega; @ 100 lux) depending on the model.

The LDR gives out an analog voltage when connected to Vcc (5V), which varies in magnitude in direct proportion to the input light intensity on it. That is, the greater the intensity of light, the greater the corresponding voltage from the LDR will be. Since the LDR gives out an analog voltage, it is connected to the analog input pin on the Arduino. The Arduino, with its built-in ADC (Analog to Digital Converter), then converts the analog voltage (from 0-5V) into a digital value in the range of (0-1023). When there is sufficient light in its environment or on its surface, the converted digital values read from the LDR through the Arduino will be in the range of 800-1023.

Here is the sketch code to test the sensor:

 int sensorPin =A0; /* select the input pin for LDR */int sensorValue =0; /* variable to store the value coming from the sensor */void setup(void) { Serial.begin(9600); /* start serial port */} void loop(void) { sensorValue =analogRead(sensorPin); // read the value from the sensor // We'll have a few threshholds, qualitatively determined Serial.print("LDR Value ="); Serial.print(sensorValue); if (sensorValue <100) { Serial.println(" (Dark)"); } else if (sensorValue <200) { Serial.println(" (Dim)"); } else if (sensorValue <500) { Serial.println(" (Light)"); } else if (sensorValue <800) { Serial.println(" (Bright)"); } else { Serial.println(" (Very bright)"); } delay(3000);}  

Next is Water Level Sensor

I want to have a water level sensor in order to receive an alarm when the water container is empty, and its time to add some water. Because I did not think about it in advance, and we did not have any water level sensor in our stock, I decided that I can make my own water sensor!

I decided to use the materials available, in my case the Soil Moisture Sensor . The basic principle of the water level sensor is to measure electric conductivity, which is the same for the soil moisture sensor. I thought that If I can calibrate the sensor in a way that will fulfil my requirements, I can use the moisture sensor like an water level sensor) In principle, this is an analog sensor and the data that we will read will be values from 0 to 1024, and the rest is just math!

But as it often happens, the reality is slightly different. When the sensor is not in touch with the water, the analog value is 0, and when I submerge only the tip, the value goes to 800. I used the following sketch to read the values:

 /* Print values from analog pin A4 to serial monitor */void setup(){ Serial.begin(9600); }void loop(){ Serial.println(analogRead(A4)); delay(100);}  

After I can read the values, I calibrated the sensor to give out three different responses:EMPTY! - when the value is 0, LOW when the values are around 800, and Full when the values are more than 900!

Graphic LCD Display

Because usually the LCD displays use a lot of pins, I had to find a way to connect the 128×64 screen in another way, and I DID!!! This way alows using only 3 Digital Pins on the board which is awesome because I may need the rest of the pins for other stuff, and it does not create a mess of wires. I premade the pins for the LCD on my PCB, and this is how I connected everything:

After I connect the LCD, It's time to programm it!

First of all, I have to download the U8glib library from HERE. Another important thing is the declared pins used in the code. The one I used are the following: U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE)

Using the "HELLO WORLD" library example, I came up with this test code:

 #include "U8glib.h"U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);void draw(void) { // graphic commands to redraw the complete screen should be placed here u8g.setFont(u8g_font_unifont); u8g.setPrintPos(0, 20); // call procedure from base class, http://arduino.cc/en/Serial/Print u8g.print("GIY Project v1.0!");}void setup(void) { // flip screen, if required // u8g.setRot180();}void loop(void) { // picture loop u8g.firstPage(); делать {рисовать (); } while (u8g.nextPage ()); // rebuild the picture after some delay delay(500);} 

And this is what I get:

One cool idea that came to my mind was to display the FabLab logo for some seconds, all the time when the display is powered. I spent quite a lot of time on doing this, but I finally did it! In order to display it on the Graphic LCD, I had to have a (.bmp) format picture, and display it as a bitmap.

First thing which I did was download the FabLab logo from the internet as a (.png) file, and reduce it significantly in size, so it fits my small LCD borders. I used the following online service to do that:LINK

These are the configurations I used:

The next step is to convert my small picture into (.bmp) format. I used the following online service to do that:LINK

Now, after I have my (.bmp) file, in order to place it into my code, I have to convert it into HEX array. I used a nice tool called LCD Assistant . To load up an image in LCD Assistant, go to File> Load Image. A preview of the image should open up, make sure it’s the right size – 128 pixels wide, 64 pixels tall . Also make sure the Byte orientation is set to Horizontal and the Size endianness is set to Little . These are the configurations for my LCD Display:

Then I go to File> Save output to generate a temporary text file. Open that text file to have a look at my shiny new array.

pH Sensor

I should admit that this is the most tricky sensor from all that I played with! It is really hard to find any info about the sensor which I am using (logo ph sensor v1.1) , so I decided to make a detailed description about it!

The probe is like a (tiny) battery when placed in a liquid. Depending the pH it output a positive or negative voltage of a couple of millivolts. This value is too small and other tech stuff like impedance make it unusable directly with an Arduino, that's why you need an "op amp". The op amp board just convert the millivolts of the probe into to something acceptable for Arduino (positive between 0 and 5v).

There are 3 common buffer solutions used for pH measurement:pH 4.01, pH 6.86 and pH 9.18 (7.0 and 10.0 exists). I suggest the powder instead the liquid because it's cheaper, expire after longer and the powder can't be contaminated (vs bottle). You should read the product instructions but usually you have to put the content of the bag into 250ml of water and stir. You can use any water with an average pH (6-8) because the powder will saturate the water at the correct pH level. I personally use tap water (pH 7.4) and didn't see any difference between distilled, and demineralized water. Buffers are not stable in the time, this means that you cannot keep the solution for weeks or months.

Now let's talk more about the sensor that I am using!

  • Pin To:Should be the temperature but I can't make it work
  • Pin Po:Analog input signal
  • Pin To:Should be the temperature but I can't make it work
  • Pin Do:High/Low 3.3v adjustable limit.
  • Pin G/GND:Probe ground. It is useful when the ground is not the same as your Arduino. In some circumstances the ground voltage of the liquid to measure can be different.
  • Pin G/GND:Power ground (direct from the board).
  • Pin V+/VCC:Input power 5V DC (direct from the board).
  • Blue potentiometer (close to BNC):pH offset.
  • Blue potentiometer (close to pins):limit adjustment.

Now let's try to calibrate the sensor! There are 2 different parameters, the "offset" value and the "step" value

The offset is the shifting of all pH values to a specific voltage range. If a pH 7 output a voltage of 2.2v and pH 8 a voltage of 2.1v, then a shift of +0.3v move the pH 7 to 2.5v and the pH 8 to 2.4v. This can be done on the board or via software but it's probably easier on the board because it's probe independent and there are less programming to do.

Connect GND (both) and Vcc to Arduino GND and 5v. Remove the probe and do a short circuit between the the small BNC hole and the external part of BNC. Put a voltmeter (or Arduino) to measure the voltage between GND and Po. Adjust the pot (close BNC) until the output is 2.5v. Now the pH 7 have an exact value of 2.5v (511 with analogRead function) because the probe will output 0 millivolt.

To calibrate the steps I need one or more buffer solutions depending on the range and precision required. Ideally it is better to know the range of the measure with the system. I use water between pH 5 and pH 7, then I choose the buffer 4.01 (and 6.86 to verify my stuff). If you usually measure pH between 8 and 10 choose buffer 9.18 (eventually 6.86 also).

I connect the (clean) probe and put it in the buffer, then let it stabilize for a minute. I know it's stable when it goes up and down (3.04 then 3.05 then 3.03 then 3.04).Take note of the voltmeter (or Arduino) value, in my example it's 3.05v.

That's all, now I can use it with the code below.

 int ph_pin =A7; //This is the pin number connected to Povoid setup() {  Serial.begin(9600);}void loop() {  int measure =analogRead(ph_pin); Serial.print("Measure:"); Serial.print(measure); double voltage =5 / 1024.0 * measure; //classic digital to voltage conversion  Serial.print("\tVoltage:"); Serial.print(voltage, 3); // PH_step =(voltage@PH7 - voltage@PH4) / (PH7 - PH4)  // PH_probe =PH7 - ((voltage@PH7 - voltage@probe) / PH_step)  float Po =7 + ((2.5 - voltage) / 0.18); Serial.print("\tPH:"); Serial.print(Po, 3); Serial.println (""); задержка (2000);}  

The PH_step calculation is quite simple. I take the difference between the two known voltage, in my example 2.5v@pH7 and [email protected] which is -0.55v. It's the voltage range equivalent of the pH range from 7 to 4.01, which is 2.99 pH units. A small division of the voltage by pH units gives a volts per pH number (0, 1839... in my case).

The PH_probe is calculated by taking the known pH 7 voltage (2.5v) where we add some PH_step to match the probe voltage. This means that a pH of 8 has a voltage value of 2.5v (pH 7) + 0.1839 (1 unit/step); pH 9 then is 2.5v + 0.1839 + 0.1839 =2.87v.

No magic, JUST MATH :D

MOSFET output:

I connected the RGB LED stripe and the Ultrasonic Atomizer to the MOSFET circuit outputs, which are controlled by digital pins. For the LED lights, I stated in the setup digitalWrite (LED, HIGH); , which means that the LED will switch on all the time when the system is powered. For the Fog maker, I made an If function depending on the water level value. If there is water, the fog maker is ON, if there is no water, EMPTY!, then the fog is OFF!

Now Let's put things together!

Here I came up with my final code:

 #include "dht.h"#include "U8glib.h"#include #include #define DHT11_PIN 2 // what digital pin we're connected to#define ONE_WIRE_BUS 3#define WATER_LEVEL A4#define LDR_PIN A3#define PH_PIN A5#define GROW_LIGHT 10#define FOG_PUMP 13int waterLevel;int LightLevel;int pH;dht DHT;OneWire oneWire(ONE_WIRE_BUS); DallasTemperature waterTemp(&oneWire);U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);const unsigned char logo [] PROGMEM ={0xFF, 0xFF, 0xFF, 0xFE, 0x7F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF8, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFE, 0x00, 0x03, 0xC0, 0x00, 0x7F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x07, 0xE0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x3F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0 x18, 0x1F, 0x00, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x00, 0x03, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x03, 0x80, 0x00, 0x00, 0x3F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x07, 0xE0, 0x00, 0x00, 0x1F, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x1F, 0xF0, 0x00, 0x00, 0x1F, 0xF0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3F, 0xF0, 0x00, 0x00, 0x1F, 0xFC, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x0 0, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xF8, 0x00, 0x00, 0x7F, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFC, 0x00, 0x00, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFF, 0x00, 0x01, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xC0, 0x07, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFE, 0x1F, 0xFF, 0xFF, 0xF0, 0x3C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF8, 0x03, 0xFF, 0xFF, 0xC0, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF0, 0x01, 0xFF, 0xFF, 0x80, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xF0, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x3F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x03, 0x00, 0x00, 0x00, 0x00, 0x 00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFC, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFE, 0x00, 0x0F, 0xF0, 0x00, 0x3F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3E, 0x00, 0x0F, 0xF0, 0x00, 0x7C, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x1E, 0x00, 0x1F, 0xF8, 0x00, 0xF8, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x06, 0x00, 0x1F, 0xFC, 0x01, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0x0F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFC, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x7F, 0xFF, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x7F, 0xFF, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0x7F, 0xFF, 0x80, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x0F, 0xF0, 0x00, 0x1F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFC, 0x00, 0x03, 0xC0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0 x00, 0x00, 0x00,0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0xFD, 0x3F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};bool first;float hum =0.0;double T=0.0;void dht_test(float * humPerc);void setup(void) { waterTemp.begin(); pinMode (GROW_LIGHT, OUTPUT); pinMode (FOG_PUMP, OUTPUT); digitalWrite (GROW_LIGHT, HIGH); first =true; // assign default color value if ( u8g.getMode() ==U8G_MODE_R3G3B2 ) { u8g.setColorIndex(255); // white } else if ( u8g.getMode() ==U8G_MODE_GRAY2BIT ) { u8g.setColorIndex(3); // max intensity } else if ( u8g.getMode() ==U8G_MODE_BW ) { u8g.setColorIndex(1); // pixel on } else if ( u8g.getMode() ==U8G_MODE_HICOLOR ) { u8g.setHiColorByRGB(255,255,255); } // picture loop u8g.firstPage(); do { u8g.drawBitmapP( 32, 0, 16, 64, logo); } while (u8g.nextPage ()); dht_test(&hum);}void RefreshDisplay(float * humPerc, double *T, int *WL, int *LL, int *pH_value) { u8g.setFont(u8g_font_fub11); u8g.setFontRefHeightExtendedText(); u8g.setDefaultForegroundColor(); u8g.setFontPosTop(); u8g.drawStr( 4, 0, "Hum%"); u8g.setPrintPos( 68, 0); u8g.print( *humPerc); u8g.drawStr( 4, 15, "Temp"); u8g.setPrintPos( 68, 15); u8g.print( *T); u8g.drawStr( 4, 30, "Wlvl"); if (*WL ==0){ u8g.drawStr (68, 30,"EMPTY!"); digitalWrite (FOG_PUMP, LOW); } else{ if (*WL <800) u8g.drawStr (68, 30,"LOW"); else { digitalWrite(FOG_PUMP, HIGH); u8g.drawStr (68, 30,"HIGH"); } } if (*LL <100) { u8g.drawStr (68, 45,"Dark"); } else if (*LL <200) { u8g.drawStr (68, 45,"Dim"); } else if (*LL <500) { u8g.drawStr (68, 45, "Light"); } else if (*LL <800) { u8g.drawStr (68, 45,"Bright"); } else { u8g.drawStr (68, 45,"2Bright"); } double voltage =5.0 / 1024.0 * (*pH_value); float Po =7 + ((2.5 - voltage) / 0.18); u8g.drawStr (4, 45,"pH"); u8g.setPrintPos( 28, 45); u8g.print( Po); }void loop(void) {waterTemp.requestTemperatures();T =waterTemp.getTempCByIndex(0);waterLevel =analogRead(WATER_LEVEL);LightLevel =analogRead(LDR_PIN);pH =analogRead (PH_PIN);char status;int chk =DHT.read11(DHT11_PIN);hum =DHT.humidity; dht_test(&hum); if(first) { first =false; } else { u8g.firstPage(); do { RefreshDisplay(&hum, &T,&waterLevel, &LightLevel, &pH); } while (u8g.nextPage ()); }}void dht_test(float * humPerc) { // Wait a few seconds between measurements. delay(1000);}  

Download Files:

GIY Final Code (.ino)

3D Design &3D Printing

Actually for my final system, I used a lot of 3D design and 3D printing technique. I used two different printers, and played a lot with the settings until I got the desired result!

For 3D design, I used which as I mentioned before, is my favourite CAD software! I will not go too much into details of how to create simple shapes, and extrude objects, all this could be found during my Computer-Aided Design week, where I learned how to use diferent softwares, as well as 3D Scanning and Printing week.

The main task was to design the physical appearence of my system! The challenge was that I wanted it to look SEXY!!!

The aesthetics was a very important criteria, as well as functionality! The system should also be assemblable, which makes it even more challenging. I also wanted to integrate the skills which I learned like 3D printing, CNC milling, Laser cutting etc.

Before designing it in the digital world, I made a simple sketch on paper! Here it is:

And this is the final 3D design:

My sexy ass system :D

First thing which I designed was the water container . Here it is:

It incorporates several features! First, there is enough space for plants to grow, as well as in the middle I made a hole to place the Ultrasonic Atomizer. It is done because I wanted to level the fogger with the container. The thing is that the water level should be above the fogger by 2cm, so all the water which is leveled with the fogger hight, will not be used (waste)! So if I place the fogger below the container level, I have a water zero level exactly at the point where it should be, zero for the container =2cm above the fogger. In this way, all the water is used!

I also considered the hight of the container. Actually, all the dimensions of the container are measured during the experimental stage!

As you can see, I made a hole on the wall, which will be used for the cables from sensors placed in the water to hide into the electronics section. In the front of the container, I made the slot to attach the graphic display. I also designed some handles to easily remove the container when need!

From this perspective, you can see the electronics section. Now its opened, but I also designed a lid to close it. Inside the electronics section, I designed a hole to have access to power and program the board

On the bottom side I designed sliders which will be attached to the rest of the system, and make it easier to remove the container when needed, it will also play a role of fixation of the container in place!

And now Let's Print It!

I can proudly announce that the printer which I will be using is called BigRep 3D Printer , only available in our FabLab Kamp-Lintfort. It has a capacity of one cubic meter, and provides the largest FFF build volume for professional and industrial use.

The slicing software which I use is Simplify3D , one of the most advanced slicing tools, in my opinion, with a lot of configurations and options.

I do not think that there is a right and a wrong way to print something, you just have to play with the settings until you find the best options for the specific object to print.

Because this printer is new, there are not too many testings made. So, I had to experiment with the settings, and try, try and again try...

I will show bellow the settings that I will be using for my water container print, but some of them are intuitive.

I choose the Tool1 , because the BigRep Printer has two nozzels with two different filaments, and I have to specify which nozzel I want to use, as well as the nozzle diameter and the rest of the settings.

Layer:

Additions:

Infill:

Поддержка:

Temperature:

Cooling:

Other:

Advanced:

These are the changes that I made, the rest of the settings I just left by default.

And then press on Prepare to Print . The software will generate the paths, and here we can check if everything is good, before sending the .gcode to the maschine.

Briefly about some of the printer's settings. I used Nozzle Temperature =205 deg.C , and the Bed Temperature =70 deg.C . After I positioned the X, Y, and Z axis , and double checked all the settings, I launched the job!

This is how the raw model looks like:

When I started removing the support and cleaning the model, I realized that this is a BIG pain in the ASS :D

As you can notice, the settings which I used are not really perfect, because the container has some big holes next to the edges. I had in my mind to waterproof it anyway, you can see how I did it in the Moulding &Casting section!

The next 3D printed part was the Net Pot . This is a cup which is designed to hold the seeds in the growing medium. More detailes about the first version of them you can see during my Computer-Aided Design week

This time I will improve the design a bit based on the observations that I made during the experimental stage. The main difference is the size of the empty space, which is increased a lot, to give an easier access for the fog to pass in, and for the roots to go through

So I just modified the old design, and added one more thing!

I made a slight fillet on the top part, to make the transition smoother. I also added a ball on the bottom, and used the Move command to move it a bit inside, and leave on the bottom around 2-3mm structure width

After I used the boolean substraction or Combine function, and I get this nice curviture at the bottom!

Now let's print it!

The 3D printer which I used is Ultimaker 2+ . To slice my 3D model, I will use, a very nice software, with an easy interface, and also functional. The material that I am using is PLA filament

After I import my .stl file, these are the settings that I am using:

Here it is my little army :D

From the final design of the system, I decided to also 3D print the bottom part. Its a big piece, and I will use the BigRap as well for this.

I wouldn't say that there is anything new about this, because I used the same settings as I used for the water container , and more or less the rest is the same

Here is the preview of the print:

Another thing which I 3D printed are the rounded corners on the top side of the system. I used the Ultimaker for this, and used the following settings:

The trick here was to achieve maximum smoothness on the surface, and I think I got a pretty good result:

Download Files:

GIY System Design (.f3d)

Net Pot Design (.f3d)

2D Design &Laser Cutting

I used the Laser cutting technique to cut acrylic parts which will cover all the inside part of the system, and give it a finished look!

I actually did not design the parts again, I just exported the already created sketches from Fusion 360 as .dxf files . After I exported the file, I used to edit the design before importing it into the lasercut machine

This is how the sketch looks in Fusion360:

Looks like a big mess, but the good part is that everything is parametric! It looks messy because I had to align everything into the right position, and keep the stuff parametric in case I have to make a change later

This is how the final sketch looks in Rhino before lasercutting:

I decided to use a green acrylic piece because it gives an organic look, and combines well with the green plants

For the front and the back cover, I decided to use white color. Its all about the taste, this is the way I see it, and this is how I like it.

The front and the back cover are very similar, have the same dimensions, except the inside cuts! The front cover has the hole for the LCD Display, here it is:

For the back cover, I want to make a hole to have access to power and program the board! This is how it looks:

Another lasercutted piece is on the top! I decided to use a transparent acrylic part, in order for the light to go through! I also designed some additional cuts, to decrease the weight, and give more space for the light to pass! I also measured the width of the RGB LED stripes, and will attach them in a way that there is enough room for the sunlight as well as artificial light!

I finished with the design, and now Let's Laser Cut!

The Laser Cutter that we are using here in FabLab is Epilog Fusion 60Watt, a CO2 lasercutter with a working area of 1016 x 711 mm. It can cut and ingrave materials like wood, cardboard, acrylic or other engineered plastics.

Because I used the same material for all the pieces, plexiglass 5mm , I used the same settings for all of them!

Download Files:

Front / Back Cover (.dxf)

Plant Holder (.dxf)

LED Light Holder (.dxf)

CNC Milling

Because I wanted to integrate in my system all the skills and techniques that I learned, I also have a piece of structure to CNC mill. I did not design it again, but I exported the .dxf file from Fusion360 sketch!

To cut my design, I will be using the big CNC monster.

A CNC (computer numerically controlled) is a machine that uses a cutting bit that rotates at a very high speed to remove material from a part.

The machine reads a pre‐programed computer file telling it where and how to cut, usually .GCode file. A cutting bit is rotated at a very high RPM by a spindle motor, which can move the bit up and down. This mechanism is moved left, right, front, and back by a cross arm. The machine is therefore known as a three‐axis router because it can move on the X, Y &Z axis. The machine can do two dimensional cutouts and etching, as well as three‐dimensional relief work.

In FabLab Kamp-Lintfort we have a CNC portal milling machine by  e(sign:Easy Worker MasterPro 2513.

It’s working area is 2600 x 1400 x 300mm and it comes with a vacuum table. We primarily use it for wood milling but with its HSD Spindel (3.9KW; 24.000U/min) it is also capable to mill metals easily.

The material which I will be using is 18mm Plywood

At first, I place the wood sheet on the CNC bed, and after I aligned it, switch on the vacuum. After I exported the .dxf file, I used to edit the design before importing it into the machine CAM software.

First, I have to HOME the machine!

To set the X, Y and Z Zero Positions, I home the machine by pressing the home button in the software (or on the remote control).

At first, I can set my zero X and Y roughly aligned to one of the corners of the bed. We also tried to use the laser for this, but all the time when simulating the process, it was showing collisions, because the zero was going out of the working area

Now I have to find the Z axis, which I do using the special tool which comes with the machine:

Important thing is to place it on the bed of the machine!

Now I can launch the first job, which is making the engraving. These are the settings which I used:

I press Calculate Toolpath to simulate the job and make sure that there are no collisions! After I save the .GCode , and launch the job, I get this window:

Now I can launch the outside cut:

This is what I get after the job is done:

Another piece which I had to mill is used for the Moulding &Casting section!

I prepared the mould to waterproof my water container. Here is the design:

There is nothing new about this. I used exactly the same settings as above. The only thing is the material thickness was 10mm wood , and I had to cut 7 pieces, to glue them together later and prepare my mould!

Download Files:

Structure Walls (.dxf)

Mould (.dxf)

Moulding &Casting

I used this technique in order to prepare a water container, to waterproof my existing container! I see it as a thin layer of material (a smaller container) which can be easily removable!

This is the result from the previous section CNC Milling

I cut 7 identical pieces, and aligned them using the reference holes! I also cut a big hole in the middle of 5 bottom pieces , in order to place the air pump inside, and easily remove the cast later.

After I glued all the pieces together, and fixed them, this is how it looks:

While waiting for the glue to dry out, I prepared a little plastic "thing" (do not know how to call it :D) for the pump. The idea is to be able to screw it on my mould, and remove it whenever I want!

When the mould is ready, this is how it looks:

And the back side:

I am ready to vacuum cast!

I used a vacuum machine available in our FabLab Kamp-Lintfort called Formech – Manual Vacuum Forming Machine

The thing is that I tried to do it many times, and all the time I could not remove the mould without breaking the cast! After several hours of trials, I came up with a solution! First, I vacuum casted one thin layer of material, and without removing it, I will cast the actual container on top of it. The first thin layer is slippery, and If I spray it with silicon, it will allow me to remove the mould way easier

After I let the silicon to dry a bit, I can cast the actual layer!

And here we are!!!

A hero shot for those who may thing that it was easy

Putting All Together

Now, let's put everything together! I will start by assembling the structure. Put next to me all the necessary tools:

A short animation of the process:

To assemble the lights, I cut the RGB LED stripes into 4 pieces (I measured the length in advance), and soldered them accordingly!

After I connected all the sensors, and managed the wiring, I fixed the board in the electronics section

And here it is the system!!! Everything assembled, nice looking growing system GIY

A HERO shot during the working process!

Final Presentation Video

© 2017 Albot Dima. All rights reserved | [email protected]

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

For more details about the project, please visit the official source:

http://archive.fabacademy.org/2017/fablabkamplintfort/students/396/final.html

Код

  • GIY Board - CODE
  • GIY BOARD - LCD + LIGHT CODE
GIY Board - CODEArduino
#include "dht.h"#include "U8glib.h"#include #include #define DHT11_PIN 2 // what digital pin we're connected to#define ONE_WIRE_BUS 3#define WATER_LEVEL A4#define LDR_PIN A3#define PH_PIN A5#define GROW_LIGHT 10#define FOG_PUMP 13int waterLevel;int LightLevel;int pH;dht DHT;OneWire oneWire(ONE_WIRE_BUS); DallasTemperature waterTemp(&oneWire);U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);const unsigned char logo [] PROGMEM ={0xFF, 0xFF, 0xFF, 0xFE, 0x7F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF8, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFE, 0x00, 0x03, 0xC0, 0x00, 0x7F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x07, 0xE0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x3F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0 x18, 0x1F, 0x00, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x00, 0x03, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x03, 0x80, 0x00, 0x00, 0x3F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x07, 0xE0, 0x00, 0x00, 0x1F, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x1F, 0xF0, 0x00, 0x00, 0x1F, 0xF0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3F, 0xF0, 0x00, 0x00, 0x1F, 0xFC, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x0 0, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFF, 0xF0, 0x00, 0x00, 0x3F, 0xFF, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xF8, 0x00, 0x00, 0x7F, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFC, 0x00, 0x00, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xFF, 0xFF, 0x00, 0x01, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xC0, 0x07, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xFE, 0x1F, 0xFF, 0xFF, 0xF0, 0x3C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF8, 0x03, 0xFF, 0xFF, 0xC0, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xF0, 0x01, 0xFF, 0xFF, 0x80, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xF0, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x3F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xFC, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x1F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF8, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x0F, 0xF0, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x80, 0xE0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x07, 0x03, 0x00, 0x00, 0x00, 0x00, 0x 00, 0x00, 0x00, 0x00,0xC0, 0xF0, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xC0, 0xF8, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFC, 0x00, 0x07, 0xF0, 0x00, 0x1F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xE0, 0xFE, 0x00, 0x0F, 0xF0, 0x00, 0x3F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x3E, 0x00, 0x0F, 0xF0, 0x00, 0x7C, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF0, 0x1E, 0x00, 0x1F, 0xF8, 0x00, 0xF8, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xF8, 0x06, 0x00, 0x1F, 0xFC, 0x01, 0xE0, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0x0F, 0x80, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFC, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFC, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x00, 0x00, 0x7F, 0xFF, 0xF0, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0x80, 0x00, 0x7F, 0xFF, 0xC0, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xC0, 0x00, 0x7F, 0xFF, 0x80, 0x03, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xE0, 0x00, 0x7F, 0xFE, 0x00, 0x07, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF0, 0x00, 0x1F, 0xF8, 0x00, 0x0F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xF8, 0x00, 0x0F, 0xF0, 0x00, 0x1F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFC, 0x00, 0x03, 0xC0, 0x00, 0x3F, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xC0, 0x00, 0x00, 0x03, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xF0, 0x00, 0x00, 0x1F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0 x00, 0x00, 0x00,0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0xFF, 0xFF, 0xFF, 0xFD, 0x3F, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};bool first;float hum =0.0;double T=0.0;void dht_test(float * humPerc);void setup(void) { waterTemp.begin(); pinMode (GROW_LIGHT, OUTPUT); pinMode (FOG_PUMP, OUTPUT); digitalWrite (GROW_LIGHT, HIGH); first =true; // assign default color value if ( u8g.getMode() ==U8G_MODE_R3G3B2 ) { u8g.setColorIndex(255); // white } else if ( u8g.getMode() ==U8G_MODE_GRAY2BIT ) { u8g.setColorIndex(3); // max intensity } else if ( u8g.getMode() ==U8G_MODE_BW ) { u8g.setColorIndex(1); // pixel on } else if ( u8g.getMode() ==U8G_MODE_HICOLOR ) { u8g.setHiColorByRGB(255,255,255); } // picture loop u8g.firstPage(); do { u8g.drawBitmapP( 32, 0, 16, 64, logo); } while (u8g.nextPage ()); dht_test(&hum);}void RefreshDisplay(float * humPerc, double *T, int *WL, int *LL, int *pH_value) { u8g.setFont(u8g_font_fub11); u8g.setFontRefHeightExtendedText(); u8g.setDefaultForegroundColor(); u8g.setFontPosTop(); u8g.drawStr( 4, 0, "Hum%"); u8g.setPrintPos( 68, 0); u8g.print( *humPerc); u8g.drawStr( 4, 15, "Temp"); u8g.setPrintPos( 68, 15); u8g.print( *T); u8g.drawStr( 4, 30, "Wlvl"); if (*WL ==0){ u8g.drawStr (68, 30,"EMPTY!"); digitalWrite (FOG_PUMP, LOW); } else{ if (*WL <800) u8g.drawStr (68, 30,"LOW"); else { digitalWrite(FOG_PUMP, HIGH); u8g.drawStr (68, 30,"HIGH"); } } if (*LL <100) { u8g.drawStr (68, 45,"Dark"); } else if (*LL <200) { u8g.drawStr (68, 45,"Dim"); } else if (*LL <500) { u8g.drawStr (68, 45,"Light"); } else if (*LL <800) { u8g.drawStr (68, 45,"Bright"); } else { u8g.drawStr (68, 45,"2Bright"); } double voltage =5.0 / 1024.0 * (*pH_value); float Po =7 + ((2.5 - voltage) / 0.18); u8g.drawStr (4, 45,"pH"); u8g.setPrintPos( 28, 45); u8g.print( Po); }void loop(void) {waterTemp.requestTemperatures();T =waterTemp.getTempCByIndex(0);waterLevel =analogRead(WATER_LEVEL);LightLevel =analogRead(LDR_PIN);pH =analogRead (PH_PIN);char status;int chk =DHT.read11(DHT11_PIN);hum =DHT.humidity; dht_test(&hum); if(first) { first =false; } else { u8g.firstPage(); do { RefreshDisplay(&hum, &T,&waterLevel, &LightLevel, &pH); } while (u8g.nextPage ()); }}void dht_test(float * humPerc) { // Wait a few seconds between measurements. задержка (1000);} 
GIY BOARD - LCD + LIGHT CODEArduino
#include "U8glib.h"int led =10;U8GLIB_ST7920_128X64 u8g(4, 12, 6, U8G_PIN_NONE);void draw(void) { // graphic commands to redraw the complete screen should be placed here u8g.setFont(u8g_font_unifont); u8g.setPrintPos(0, 20); // call procedure from base class, http://arduino.cc/en/Serial/Print u8g.print("GIY Project v1.0!");}void setup(void) { pinMode (led, OUTPUT); digitalWrite (led, HIGH);}void loop(void) { // picture loop u8g.firstPage(); делать {рисовать (); } while (u8g.nextPage ()); // rebuild the picture after some delay delay(500);}

Схема


Производственный процесс

  1. Визитная карточка игры «Крестики-нолики»
  2. Многотемпературный датчик
  3. Управление паяльником DIY для 862D +
  4. MotionSense
  5. Пожарная безопасность 3D-принтера
  6. Датчик Интернета вещей с Arduino, Yaler и IFTTT
  7. Отталкивающая электромагнитная левитация Arduino
  8. Бот для захвата удаленного управления
  9. Регистратор данных с погодными шарами на базе Arduino
  10. CoroFence - Тепловой детектор🖖